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Abstract

We prove a tight connection between two important notions in combinatorial optimiza-

tion. Let G be a graph class (i.e. a subset of all graphs) and r(G) = supG∈G
χf (G)
ω(G) where

χf (G) and ω(G) are the fractional chromatic number and clique number of G respec-
tively. In this note, we prove that r(G) tightly captures the integrality gap of the LP
relaxation with clique constraints for the Maximum Weight Independent Set (MWIS)
problem. Our proof uses standard applications of multiplicative weight techniques, so
it is algorithmic: Any algorithm for rounding the LP can be turned into a fractional
coloring algorithm and vice versa. We discuss immediate applications of our results in
approximating the fractional chromatic number of certain classes of intersection graphs.
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1 Introduction

In the Maximum Weight Independent Set Problem (MWIS), we are given graph
G and weight function w : V (G) → R≥0. A set J ⊆ V (G) is independent if
there is no edge in J . Define w(J) =

∑
v∈J w(v). Our goal is to compute the

maximum weight independent set in G. We denote the weight of a maximum
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weight independent set by α(G,w). This problem is cornerstone in combinatorial
optimization and has been extensively studied.

We consider the LP relaxation with clique constraints for MWIS. For each
vertex v ∈ V , there is a variable xv indicating whether vertex v is included.

(LP) max
∑

v∈V (G)

w(v)xv

s.t.
∑
v∈C

xv ≤ 1 for each clique C in graph G

In general, the number of cliques can be exponentially large, but for restricted
graph classes (e.g. intersection graphs of rectangles in higher dimensional boxes
[4,3]), there is only a polynomial number of maximal cliques. Moreover, it is known
that all clique constraints are implied by the canonical SDP relaxation of MWIS,
as well as the Lovasz theta function [6]. The main question of our interest is:

How good is (LP) in approximating the maximum-weight independent set?

For each G and weight function w, define LP(G,w) as the value of an optimal

solution for the above LP. The integrality gap gap(G,w) is the ratio LP(G,w)
α(G,w)

.

In this note, we show a tight connection between the integrality gap of (LP)
and the fractional chromatic number of a graph. A valid fractional coloring for
G is a function σ : 2V (G) → [0, 1] such that (i) the support of σ contains only
independent sets, and (ii) for each v ∈ V (G), we have

∑
I:v∈I σ(I) ≥ 1. The

fractional chromatic number χf (G) is defined as the minimum real number k such
that there exists a valid fractional coloring σ,

∑
I σ(I) ≤ k.

For any graph G, a clique replacement operation on v is performed by creating
graph G′ : V (G′) = (V (G) \ v) ∪ {v1, . . . , v`} and E(G′) = E(G \ v) ∪ {viu : vu ∈
E(G)} ∪ {vivj : i, j ∈ [`]}. In words, this operation replaces vertex v with a clique
K`. Let G be a class of graphs. We say that G is closed under clique replacement
if for any G ∈ G, a clique replacement operation at v gives us G′ ∈ G. Many
natural graph classes are closed under clique replacement, e.g., interval graphs,
d-dimensional box graphs, disk graphs, and perfect graphs.

Theorem 1.1 Let G be any class of graphs that is closed under clique replacement.
The following statements hold:

• Suppose that, for any n-vertex graph G ∈ G, we have χf (G) ≤ γ(n)ω(G). Then,
for any G ∈ G and any weight function w, we have LP(G,w) ≤ γ(N)α(G,w) for
some N . Moreover, given a fractional coloring with polynomial support, there is
a (1 + ε)γ(N) approximation for MWIS via rounding (LP), for N = O(n2/ε).

• Assume LP(G,w) ≤ γ(n)α(G,w) for all w. Then we have χf (G) ≤ γ(n)ω(G).
Moreover, given a polynomial-time γ(n)-approximation LP rounding algorithm
for MWIS, we can efficiently compute a fractional coloring using at most (1 +



ε)γ(n)ω(G) colors for any ε > 0.

The gap between χ(G) and ω(G) has received a lot of attention in the con-
text of intersection graphs. In particular, many old problems in mathematics are
related to χ-boundedness 3 of intersection graphs (see for instance [2,5] and refer-
ences therein). We hope that this work will encourage the study of χf (G)/ω(G).
Our results have many immediate applications, giving both new algorithmic and
integrality gap results. Due to the space limit, we omit the applications.

2 The Equivalence

Fractional Coloring =⇒ LP Gap: Consider any graph G = (V,E), n = |V |,
and G ∈ G. We will show that α(G,w) ≥ LP(G,w)/γ(n).

Let x be an optimal LP solution for (LP). First, assume that xv is in an integral
multiple of 1/q for some integers q. By standard LP theory, this is possible. Let
xv = qv/q. We create a graph G′ from G as follows: For each vertex v ∈ V (G),
perform a clique replacement operation on v by replacing v with a clique Xv of
size qv. Observe that ω(G′) ≤ q: Let C ′ be a clique in G′. Consider the set
C = {v ∈ V (G) : Xv ∩ C ′ 6= ∅}. The LP constraint guarantees that

∑
v∈C xv ≤ 1

and therefore |C ′| ≤
∑

v∈C |Xv| =
∑

v∈C qv ≤ q.

Since G is closed under clique replacement operation, we have G′ ∈ G and that
χf (G

′) ≤ γ(N)q. Let σ be an optimal fractional coloring of G′. We sample an
independent set J where each J ⊆ V (G′) is sampled with probability σ(J)/χf (G).
Therefore, each vertex v ∈ V (G′) is sampled with probability

∑
I:v∈I σ(I) ≥

1/χf (G
′). So we get an independent set J : E[w(J)] =

∑
v∈V (G′)w(v)Pr[v ∈ J ] ≥

1
χf (G′)

∑
v∈V (G′)w(v). This is at least 1

γ(N)q

∑
v∈V (G)w(v)qv = LP(G,w)/γ(N).

This concludes the proof. Remark that N can be very large compared to n,
but this does not affect the ratio if γ is a constant function. If γ is not a constant
function, we can reduce the value of N to O(n2/ε), while preserving the ratio
within a factor of (1 + ε). The proof is omitted, due to space limitation.

LP Gap =⇒ Coloring: Let G be a graph on n vertices. If gap(G,w) ≤ γ(n) for
all weight vectors w, then χf (G) ≤ γ(n)ω(G). Moreover, we show how to compute
a fractional coloring using at most (1 + ε)γ(n)ω(G) colors for any ε > 0.

The following linear constraints check whether the graph is 1/η-colorable.

(P)
∑
I:v∈I

σ(I) ≥ η for all v ∈ V (G)∑
I

σ(I) ≤ 1

3 A graph is χ-bounded if χ(G) ≤ f(ω(G)) for some function f .



Our goal is to find a feasible solution σ that satisfies every constraint. Applying
a standard multiplicative weight framework, our algorithm does the following steps:

(i) Start with initial weight function w(1) where w
(1)
v = 1 for all v.

(ii) In iteration t, compute a solution σ(t) that satisfies the “weighted average

constraint”
∑

v w
(t)
v (

∑
I:v∈I σ(I)− η) ≥ 0.

(iii) Update the weight w(t) to w(t+1). Then return to Step (ii).

Theorem 2.1 [1] There is an update strategy such that, after T rounds, solution
σ = 1

T

∑T
t=1 σ

(t) (1−ε)-satisfies all constraints, i.e. for all v,
∑

I:v∈I σ(I) ≥ (1−ε)η.

It only remains to show that we can compute a solution that satisfies the
“weighted average constraint”, which means finding I with w(I) ≥ η w(t)(V ) on

(G,w(t)). Consider the linear program for MWIS, (LP), using weights {w(t)
v }v∈V .

We obtain a fractional solution x with weight 1
ω(G)

∑
v∈V w

(t)
v by setting xv =

1/ω(G) for all v ∈ V . Since
∑

v∈C xv = |C|/|ω(G)| ≤ 1, for every clique C, it is
clear that this is a solution to the LP. This implies that there is an integer solution
with weight 1

γ(n)ω(G)

∑
v∈V w

(t)
v = η

∑
v∈V w

(t)
v , that is, there is an independent set I ′

with the desired weight. Furthermore, we use a γ(n)-approximation LP rounding

algorithm to find I ′ of total weight 1
γ(n)

∑
v w

(t)
v xv = w(t)(V )/ω(G)γ(n).
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