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Abstract
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1 Introduction

Graph compression or sparsification is a basic information-theoretic and computational question of
the following nature: can we compute a “compact” representation of a graph, with fewer vertices
or edges, that preserves important information? Important examples include spanners, which
preserve distances approximately up to a multiplicative factor, and cut and spectral sparsifiers
[BK96, ST04], which preserve cuts and the Laplacian spectrum up to an approximation factor of
(1 + ϵ). Such edge sparsifiers allow us to reduce several algorithmic problems on dense graphs to
those on sparse graphs, at the cost of a (1+ ϵ) approximation factor. On the other hand, some com-
putational tasks, such as routing or graph partitioning, require reducing the number of vertices
(instead of edges), that is, vertex sparsification.

The notion of vertex sparsification we consider here is that of cut sparsification, introduced by
[HKNR98, Moi09, LM10]. In this setting, we are given an edge-capacitated graph G and a subset
T ⊆ V(G) of k vertices called terminals, and we want to construct a smaller graph H that maintains
all the minimum cuts between every pair of subsets of T up to a multiplicative factor q, called the
quality of the sparsifier. More formally, we want to find a graph H which contains T as well as
possibly additional vertices, such that for any S ⊆ T , the minimum cut between S and T \ S in
G and H agree up to the multiplicative factor of q. Ideally, the size of the sparsifier (i.e., |V(H)|)
should only depend on |T | and not the size of G.

There have been several results regarding tradeoffs between the quality q and the size of cut
sparsifiers. One line of work considers the case where the sparsifier H has no additional ver-
tices beyond the terminals. Here, an upper bound of O(log k/ log log k) [Moi09, LM10, CLLM10,
EGK+10, MM10] and lower bound of Ω(

√
log k/ log log k) [MM10] are known. In a different di-

rection, quality 1-sparsifiers (known as mimicking networks) with 22k
vertices were shown to exist

[HKNR98, KR14], and a lower bound of 2Ω(k) is also known [KR13]. Also, Chuzhoy [Chu12]
studied the problem of obtaining the best possible trade-offs between quality and size of spar-
sifiers, and showed that quality-3 sparsifiers with O(Z3) vertices exist, where Z is the total ca-
pacity of all terminals. A major open problem is whether a quality-(1 + ϵ) cut sparsifier of size
Õ(k/poly(ϵ)) exists; so far, this is only known for special graph classes, such as quasi-bipartite
graphs [AGK14, ADK+16].

The aim of this paper is to study a related graph sparsifier that is suitable for applications in de-
signing fast algorithms for connectivity problems. In particular, we consider the following problem:
given an edge-capacitated graph G with k terminals T and a constant c, construct a graph H with
T ⊆ V(H) that maintains all minimum cuts up to size c among terminals. Precisely, we want, for
all subsets S ⊆ T , that min (c, mincutG(S, T \S)) = min (c, mincutH(S, T \S)), where, for disjoint
subsets A, B ⊆ V(G), we define mincutG(A, B) as the value of a minimum cut between A and B
in graph G. In this case, we call H a connectivity-c mimicking network of G (See Definition 2.1).

Our main result (Theorem 1.1) shows that every graph G with integer edge capacities admits a
connectivity-c mimicking network with O(kc4) edges (so O(kc4) vertices as well), and we show a
near-linear time algorithm to compute it.

Theorem 1.1 Given any edge-capacitated graph G with n vertices, m edges, along with a set T of k termi-
nals and a value c, there are algorithms that construct a connectivity-c mimicking network H of G with
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1. O(kc4) edges in time O(m · (c log n)O(c)),

2. k ·O(c)2c edges in time O(m · cO(c) logO(1) n).

In fact, the algorithm for Part 1 constructs the optimal contraction-based mimicking network, so any
existential improvement to the size bound of such mimicking networks would immediately trans-
late to an efficient algorithm.1 Our second algorithm is more efficient, while blowing up the size of
the mimicking network obtained. We believe that our dependence on c is suboptimal – we were
only able to construct instances that require at least 2kc edges in the connectivity-c mimicking
network, and are inclined to believe that an upper bound of O(kc) is likely.

Theorem 1.1 has direct applications in fixed-parameter tractability and dynamic graph data struc-
tures (see Sections 1.1 and 6). In fact, our results and techniques have already been used to give
a deterministic no(1) update time fully dynamic algorithm for c-connectivity for all c = o(log n)
[JS20]. Additionally, our results are motivated in part by elimination-based graph algorithms
[KLP+16, KS16], which we discuss in Section 1.2. In this way, we believe that achieving (1 + ϵ)-
quality cut sparsifiers of size Õ(k/poly(ϵ)), an analogue of approximate Schur complements for
cuts, may have broad applications in graph algorithms and data structures.

1.1 Our Results

Our proof of existence of connectivity-c mimicking networks with O(kc4) edges (and thus O(kc4)
vertices as well) involves extending the recursive approach of [Chu12] using well-linked sets to
a thresholded setting. The construction of [Chu12] for cut sparsifiers maintains a partition of
the vertices of the graph G. For each partition piece, the algorithm either finds a sparse cut to
recurse on, or contracts the piece. [Chu12] then bounds the deterioration in quality from these
contractions. The main differences between our approach and [Chu12] are:

• We introduce an extension of well-linkedness to a thresholded c-connectivity setting.

• We do not run the recursion all the way down. Instead, we use a kernelization result on
mimicking networks via gammoid representative sets [KW12] to bottom out the recursion.

Additionally, in order to obtain near-linear running times for our constructions, we combine the
expander decomposition technique [SW19] with several other combinatorial results that allow us to
build the desired connectivity-c mimicking network.

We would like to note that the results of [KW12, FLPS16] already give connectivity-c mimicking
networks of size poly(k, c). However, the dependence on k is at least quadratic, and the algorithms
for computing them run in at least quadratic time, as these results use linear algebra on matroids.
Therefore, their results do not give more efficient algorithms for the applications of dynamic con-
nectivity and subset c-EC below.

Theorem 1.1 has applications in data structures for dynamic edge connectivity. The problem of
dynamic c-edge-connectivity is to design an algorithm which supports edge additions, deletions,
and c-edge-connectivity queries between pairs of vertices as efficiently as possible, preferably in

1Formally, if there exists a connectivity-c mimicking network with k f (c) edges that can be obtained by only con-
tracting edges in G, for some function f , then our algorithm finds a mimicking network with at most O(k f (c)) edges.

2



nearly constant Õ(1)2 amortized update time. For online fully dynamic algorithms, such results
are only known for c ≤ 3 [HK99, HdLT01]. Even in the simpler offline model introduced by
Eppstein [Epp94], where the algorithm sees all queries at the beginning, the only result for c ≥ 4
is, to our knowledge, an unpublished offline fully dynamic algorithm for c = 4, 5 by Molina and
Sandlund [MS18], which requires about

√
n time per query. The fact that even offline algorithms

are not known for dynamic c-connectivity when c > 5 shows a serious gap in understanding of
dynamic flow algorithms. We make significant progress towards shrinking this gap, and show
in Section 6.1 that, by combining Theorem 1.1 Part 2 with a divide and conquer algorithm for
processing queries, we achieve nearly constant amortized time for offline fully dynamic c-edge-
connectivity.

Theorem 1.2 There is an offline algorithm that on an initially empty graph G answers q edge insertion,
deletion, and c-connectivity queries between arbitrary pairs of vertices in amortized Õ(cO(c)) time per query.

Finally, connectivity-c mimicking networks are perhaps the most natural object that can be used
to “pass along” connectivity information between sub-problems in the dynamic programming
framework. We illustrate this concept by presenting an additional application. The Subset c-Edge-
Connectivity (or Subset c-EC) problem is the following: given a graph G = (V, E) with costs on
edges, and a terminal set, find the cheapest subgraph H in which every pair of terminals is c-
connected. We show in Section 6.2 that Theorem 1.1 speeds up the running time for solving this
problem in low treewidth graphs.

Theorem 1.3 There is an algorithm that exactly solves Subset c-EC on an input graph G with n vertices
in time n exp

(
O(c4 tw(G) log(tw(G)c)

)
, where tw(G) denotes the treewidth of G.

This is an improvement over [CDE+18] in which the running time was doubly-exponential in both
c and tw(G). Furthermore, the existence of a conditional lower bound of (3− ϵ)tw(G) even when
c = 1, under the assumption of the strong exponential time hypothesis, implies that the depen-
dence of our running time on tw(G) is almost optimal. Additionally, our dynamic programming
based algorithm shows that any improvement to the edge bound O(kc4) in Theorem 1.1 gives an
improvement for Theorem 1.3.

1.2 Related Work

We believe that our work has potential connections to dynamic data structures, elimination-based
graph algorithms, and approximation algorithms and sparsification.

Static and Dynamic c-Edge-Connectivity Algorithms. The study of efficient algorithms for
computing graph connectivity has a long history, including the study of max-flow algo-
rithms [GT14], near-linear time algorithms for computing global min-cut [Kar00], and most re-
cently, progress in exact [Mad13, Mad16, CMSV17] and approximate max-flow algorithms [She17,
Pen16, KLOS14, She13]. The c-limited edge connectivity case can be solved in O(mc) time stati-
cally, and is also implied by ϵ-approximate routines by setting ϵ < 1/c. As a result, it is a natural
starting point for developing routines that can answer multiple flow queries on the same graph.

2Throughout, we use Õ(·) to hide poly log(n) factors. In particular, Õ(1) = poly log(n).
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The question of computing max-flow between multiple pairs of terminal vertices dates back to
the Gomory-Hu tree [GH61], which gives a tree representation of all s-t min-cuts. However, such
tree structures do not extend to arbitrary subsets of vertices, and to date, have proven difficult
to maintain dynamically. As a result, previous works on computing cuts between a subset of
vertices have gone through the use of tree-packing based certificates. These include results on
computing the minimum cut separating terminals [CH03], as well as the construction of c-limited
Gomory-Hu trees [HKP07, BHKP08].

Such results are in turn used to compute max-flow between multiple pairs of vertices [AKT19].
These problems have received much attention in fine grained complexity, since their directed ver-
sions are difficult [AWY15, AW14], and it is not known whether computing (1 + ϵ)-approximate
versions of these is possible. From this perspective, the c-limited version is a natural starting
point towards understanding the difficulty of computing (1+ ϵ)-approximate all-pairs max-flows
in both static and dynamic graphs.

For the problem of finding a connectivity-c mimicking network, the construction time of these ver-
tex sparsifiers is critical for their use in data structures [PSS19]. For a moderate number of termi-
nals (e.g., k = n0.1), nearly-linear time constructions of vertex sparsifiers with poly(k) vertices were
previously known only when c ≤ 5 [PSS19, MS18]. To our knowledge, the only results for main-
taining exact c connectivity for c ≥ 4 are incremental algorithms [DV94, DV95, DW98, GHT16],
in addition to the aforementioned fully dynamic algorithm for c = 4, 5 by Molina and Sandlund
[MS18], which took about

√
n time per query.

Furthermore, since this work was originally released, the concept of connectivity-c mimicking
networks along with the techniques of this work has been used to design deterministic no(1) time
fully dynamic algorithms for exact c-connectivity for all c = o(log n) [JS20].

Elimination-based graph algorithms: The study of connectivity-c mimicking networks in this
paper can also be viewed in the context of vertex reduction / elimination based graph algorithms.
Such algorithms are closely related to the widely used and highly practically effective multigrid
methods, which until very recently have been viewed as heuristics with unproven bounds. Even
in the static setting, the only worst-case bounds for multi-grid and elimination based algorithms
have been in the setting of linear systems [KLP+16, KS16], by utilizing a combination of vertex
and edge sparsifications. Compared to the tree-like Laplacian solvers, sparse vertex elimination
has a multitude of advantages: they are readily parallelizable [KLP+16], and can be more easily
adapted to data structures that handle dynamic graphs [DKP+17, DGGP19].

Important properties of such routines is that the size of sparsifier is linear in the number of ter-
minals, the construction can be computed in nearly linear time, and they are (1 + ϵ)-quality ap-
proximations. In particular, guaranteeing a (1 + ϵ) approximation is essential as there are often
multiples stages in elimination algorithms, so losing ω(1)-quality at each stage would be detri-
mental. Our vertex-elimination routine combines all these properties and thus meets all criteria
of previous elimination based routines [KLP+16, KS16]. On the other hand, most of the work on
vertex sparsification to date has been on shortest path metrics [vdBS19, Che18], and/or utilizes
algebraic techniques [vdBS19, KW12, FHKQ16]. As a result, these routines, when interpreted as
vertex elimination routines, either incur errors, or have size super-linear in the number of termi-
nals.
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Other notions of approximate sparsification. Without using any additional vertices, the best
known upper and lower bounds on the quality of vertex cut sparsifiers are O(log k/ log log k)
[CLLM10, MM10] and Ω(

√
log k/ log log k) [MM10] respectively. [Chu12] presents a quality-

O(1), size-O(C3) sparsifier, computable in time poly(n) · 2C, where C denotes the total capacity of
the edges incident on the terminals. It is open whether there are quality-(1+ ϵ) and size poly(k/ϵ)
vertex sparsifiers for edge connectivity, and we see Theorem 1.1 as a first step towards achieving
this goal.

Additionally, there has been significant work on vertex sparsification in approximation algo-
rithms [MM10, CLLM10, EGK+14, KR17, KW12, AKLT15, FKQ16, FHKQ16, GR16, GHP17a]. Re-
cently, vertex sparsifiers were also shown to be closely connected with dynamic graph data struc-
tures [GHP17c, PSS19, GHP18, DGGP19].

There has also been work on mimicking networks on special graph classes. Krauthgamer and
Rika [KR13] presented a mimicking network of size O(k222k) for planar graphs with k terminals,
nearly matching the lower bound [KPZP18]. When all terminals lie on the same face, mimicking
networks of size O(k2) are known [GHP17b, KR17]. An upper bound of O(k · 22tw(G)

) is known for
bounded-treewidth graphs [CSWZ00].

1.3 Structure of the Paper

In Section 2, we give preliminaries for our algorithms. In Section 3, we sketch our approach to
the main results, the existence of a connectivity-c mimicking network with O(kc4) edges and an
algorithm to construct connectivity-c mimicking networks of the optimal size, which we elaborate
in detail in Section 4. In Section 5, we take a different approach to make an algorithm more
efficient. We finalize our paper with detailed explanation on applications in Section 6.

2 Preliminaries

Our focus will be on cuts with at most c edges. Our algorithms will involve contractions, which
naturally lead to multigraphs. Therefore, we view capacitated graphs (G, w) as multigraphs with
min(we, c) copies of an edge e. Hence, we only deal with undirected, unweighted multigraphs.

Furthermore, we assume that each terminal vertex t ∈ T has degree at most c through the follow-
ing operation: for t ∈ T add a new vertex t′ and c edges between t and t′. As any cut separating t
and t′ has size at least c, this operation preserves all cuts of size at most c.

2.1 Cuts, Minimum Cuts, and (T , c)-equivalency

For a graph G = (V, E) and disjoint subsets A, B ⊆ V, let EG(A, B) denote the edges with one
endpoint in A and the other in B. The set of cuts in G consists of EG(X, V\X) for X ⊆ V. For
a subset X ⊆ V the boundary of X, denoted by ∂X, is EG(X, V\X). For subsets A, B ⊆ V, define
mincutG(A, B) to be the minimum cut separating A, B in G. If A ∩ B ̸= ∅, then mincutG(A, B) =
∞. Formally, we have

mincutG(A, B) = min
S⊆V

A⊆S,B⊆V\S

|EG(S, V\S)|.

Furthermore, we let mincut(G, A, B) be the edges in a minimum cut between A, B in G, so that
mincutG(A, B) = |mincut(G, A, B)|. If multiple minimum cuts exist, the choice is arbitrary, and
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does not affect our results. For disjoint A, B ⊆ V, we sometimes write their disjoint union as
A ·∪ B def

= A ∪ B to emphasize that A, B are disjoint. We define the thresholded minimum cut as
mincutc

G(A, B) def
= min(c, mincutG(A, B)). This definition then allows us to formally define (T , c)-

equivalence.

Definition 2.1 Let G and H be graphs both containing terminals T . We say that G and H are (T , c)-
equivalent if for any subset T1 ⊆ T of the terminals we have that

mincutc
H (T1, T \T1) = mincutc

G (T1, T \T1) .

If G and H are (T , c)-equivalent, then we also say that H is a connectivity-c mimicking network for G.

A terminal cut is any cut that has at least one terminal from T on both sides of the cut. The
minimum terminal cut is the terminal cut with the smallest number of edges. We denote by (T , c)-
cuts the terminal cuts with at most c edges.

We present several useful observations about the notion of (T , c)-equivalence.

Lemma 2.2 If G and H are (T , c)-equivalent, then for any subset of terminals T̂ ⊆ T and any ĉ ≤ c, G
and H are also (T̂ , ĉ)-equivalent.

Lemma 2.3 If G and H are (T , c)-equivalent, then for any additional set of edges Ê with endpoints in T ,
G ∪ Ê and H ∪ Ê are also (T , c)-equivalent.

When used in the reverse direction, this lemma says that we can remove edges, as long as we
include their endpoints as terminal vertices (Corollary 2.4). We complement this partitioning pro-
cess by showing that sparsifiers on disconnected graphs can be built separately (Lemma 2.5).

Corollary 2.4 Let Ê be a set of edges in G with endpoints V(Ê), and T be terminals in G. If H is
(T ∪V(Ê), c)-equivalent to G\Ê, then H ∪ Ê is (T , c)-equivalent to G.

Lemma 2.5 If G1 is (T1, c)-equivalent to H1, and G2 is (T2, c)-equivalent to H2, then the vertex-disjoint
union of G1 and G2, is (T1 ∪ T2, c)-equivalent to the vertex-disjoint union of H1 and H2.

When considering connectivity-c mimicking networks, we can restrict our attention to sparse
graphs [NI92]. For completeness, we prove the following lemma in Appendix A.1.

Lemma 2.6 Given any graph G = (V, E) on n vertices and any c ≥ 0, we can find in O(cm) time a graph
H on the same n vertices, but with at most c(n− 1) edges, such that G and H are (V, c)-equivalent.

2.2 Contractions

For a graph G and an edge e ∈ E(G), we let G/e denote the graph obtained from G by identifying
the endpoints of e as a single vertex; we say that we have contracted the edge e. The new vertex is
marked as a terminal if at least one of its endpoints was a terminal. For a subset of edges Ê ⊆ E,
we let G/Ê denote the graph obtained from G by contracting all edges in Ê. For any vertex set
X ⊆ V, we denote by G/X the graph obtained from G by contracting every edge in G[X].

For multigraphs, minimum cuts are monotonically increasing under contractions.
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Lemma 2.7 For any subset of vertices V1 and V2 in V, and any set of edges Ê, it holds that

mincutG (V1, V2) ≤ mincutG/Ê (V1, V2) .

All our mimicking networks in Theorem 1.1 are produced by contracting edges of G.

3 Overview of our Approach

In this section, we give an overview for our proof of Theorem 1.1 Part 1. We first present our
contraction-based approach to construct connectivity-c mimicking networks with O(kc4) edges,
and then show how to generically convert contraction-based approaches into efficient algorithms.

Existence of connectivity-c mimicking networks with O(kc4) edges. Recall that, in our setup,
we have a graph G with a set of k terminals T ⊆ V, and wish to construct a graph H with O(kc4)
edges which is (T , c)-equivalent to G. Our algorithm constructs H by contracting edges of G
whose contraction does not affect the terminal cuts of size at most c. To find these non-essential
edges, we intuitively perform a recursive procedure to identify essential edges, i.e., edges that are
involved in terminal cuts of size at most c. After finding this set of essential edges in G, we contract
all remaining edges.

At a high level, this recursive procedure finds a “small cut” in G, marks these edges as essential,
and recurses on both halves. We formalize this notion of small cut through the definition of well-
linkedness, variations of which have seen use throughout flow approximation algorithms [Chu12,
RST14]. Here, we introduce a thresholded version of well-linkedness.3

Definition 3.1 For a graph G, we call a subset X ⊆ V connectivity-c well-linked if for every bipartition
(A, B) of X, we have |EG(A, B)| ≥ min(|∂A ∩ ∂X|, |∂B ∩ ∂X|, c).

If a bipartition (A, B) of X satisfies |EG(A, B)| < min(|∂A∩ ∂X|, |∂B∩ ∂X|, c), we say that EG(A, B)
is a violating cut, as it certifies that X is not connectivity-c well-linked. In this way, a violating cut
corresponds to the “small cut” in G whose edges we mark as essential. Conversely, we show in
Lemma 4.2 that all edges inside a connectivity-c well-linked set are non-essential, i.e., may be freely
contracted.

Our full recursive algorithm is as follows. We maintain a partition of V\T = X1 ·∪ X2 ·∪ · · · ·∪ Xp,
where p denotes the number of pieces, and track the potential function ∑

p
i=1 |∂(Xi)|. Initially, we

let there be a single piece X = V\T , so that the potential value is |∂X| = |∂(V\T )| ≤ kc, by our
assumption in Section 2 that all terminals have degree at most c. We recursively refine the partition
until each Xi is either connectivity-c well-linked or |∂(Xi)| ≤ 2c− 1. More precisely, if |∂(Xi)| ≥ 2c
but Xi is not connectivity-c well-linked, let EG(A, B) be a violating cut of Xi for a bipartition (A, B)
of Xi; we then remove Xi and add A, B to our partition. After this partitioning process terminates,
the well-linked pieces among X1, X2, · · · , Xp may be contracted as discussed. For the pieces with
|∂(Xi)| ≤ 2c − 1 we make tricky manipulation on the boundary edges ∂(Xi) as in Lemma 4.14
and then work on the line graph of Xi. Applying a kernelization result (see Lemma 4.11), which
develops from matroid theory (gammoid in particular) and the representative sets lemma (see

3There are two notions of well-linkedness in the literature: edge linkedness and vertex linkedness. Here, our work
focuses on edge linkedness. For discussions and definitions of vertex linkedness, we refer the readers to [Ree97]

7



Theorem 4.12), to the line graph gives rise to a fruitful result (see Lemma 4.4) which is more
tailored to our edge-cut problem. It allows us to contract those pieces down to O(c3) edges and
maintain (T , c)-equivalence.

It suffices to argue that the number of pieces p in the partition is at most O(kc) at the end, so that
our total edge count is O(kc · c3) = O(kc4). To show this, note that by Definition 3.1, for a violating
cut EG(A, B) of X, we have that max(|∂A|, |∂B|) ≤ |∂X| − 1 and |∂A|+ |∂B| ≤ 2(c− 1)+ |∂X|. The
former shows that our recursive procedure terminates, and combining the latter with our potential
function bounds the number of pieces at the end. A more formal analysis is given in Section 4.1.

Note that the only non-constructive part of the above proof is the assumption that we can find a
violating cut. However, we believe that an algorithm with very efficient running time is unlikely
to exist, as this seems like a non-trivial instance of the non-uniform sparsest cut problem (in Ap-
pendix B, we present an algorithm with running time 2O(c2)k2m, which could be of independent
interest). Hence, we present another procedure that does not rely on computing a violating cut.

Efficient algorithm for constructing contraction-based connectivity-c mimicking networks.
Our above analysis, in fact, shows that all but O(kc4) edges of G may be contracted while still
giving a graph which is (T , c)-equivalent to G (see Theorem 4.1).

A natural high level approach for an algorithm would be to go through the edges e of G sequen-
tially and check whether contracting e results in a (T , c)-equivalent graph. If so, we contract e,
and otherwise, we do not. Our analysis shows that at most O(kc4) edges will remain at the end,
and in fact that proving a better existential bound improves the guarantees of such an algorithm.

Unfortunately, we do not know how to decide whether contracting an edge e maintains all (T , c)-
cuts even in polynomial time. To get around this, we enforce particular structure on our graph by
performing an expander decomposition. Expanders, defined formally in Definition 4.6, are governed
by their conductance φ, and satisfy that any cut of size at most c has at most cφ−1 vertices on
the smaller side. For a fixed parameter φ, [SW19] have given an efficient algorithm to remove
O(mφ log3 n) edges from G such that all remaining components are expanders with conductance
at least φ (see Lemma 4.7). We now mark all the removed edges as essential, delete them, and
mark their endpoints as additional terminals. Corollary 2.4 and Lemma 2.5 show that it suffices
to work separately with each remaining component, which are guaranteed to be expanders with
conductance at least φ. Note that the total number of terminals is now k + O(mφ log3 n).

In order to check each edge e and decide whether it can be safely contracted, we first enumerate all
cuts in the graph with at most c edges, of which there are at most n(cφ−1)2c, using the fact that the
small side of any cut of size at most c has at most cφ−1 vertices in a graph of conductance φ (see
Lemma 4.8). For each cut, we find the induced terminal partition, and all involved edges. This
allows us to find the minimum cut value for any terminal partition, as long as it is at most c. Now,
for an edge e we check for all minimum cuts of size at most c that it is involved in, whether there
is another minimum cut separating terminals that does not involve e. If so, e may be contracted,
and otherwise, it cannot. In case we contract e, we delete the minimum cuts containing e in the
enumeration. Since cuts are monotone under contraction (see Lemma 2.7) and a cut in G/e is
also a cut in G (see Lemma 4.9), the remaining minimum cuts in the enumeration correspond
to the minimum cuts of G/e. Hence, we do not have to rebuild the set of all small cuts during
the algorithm. As there are at most n(cφ−1)2c total cuts of size at most c, this algorithm may be
executed in time Õ(nc(cφ−1)2c) using some standard data structures.
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Finally, we discuss how to make our algorithm efficient, even though the total number of termi-
nals increased to k + O(mφ log3 n) after the expander decomposition. We set φ−1 = O(c4 log3 n),
and note that the number of edges in our connectivity-c mimicking network for G is O(kc4 +
mc4 φ log3 n) ≤ m/2 as long as m is a constant factor larger than kc4. Now we repeat this pro-
cedure until our connectivity-c mimicking network has O(kc4) edges, which requires O(log m)
iterations. Details are given in Section 4.2.

4 Existence and Algorithm for Sparsifiers with O(kc4) edges

We first show the existence of a connectivity-c mimicking network with O(kc4) edges in Sec-
tion 4.1, based on contractions of connectivity-c well-linked sets and replacement of sets with
sparse boundary. Then, in Section 4.2, we design a O(m(c log n)O(c)) time algorithm to find a
connectivity-c mimicking network whose size matches the best guarantee achievable via contrac-
tions.

4.1 Existence of Sparsifiers with O(kc4) edges via Contractions

Given a graph G and k terminals T , our construction of a connectivity-c mimicking network
with O(kc4) edges leverages a recursion scheme, where we maintain a partition of the vertices
X = V\T , and track the total number of boundary edges of the partition as a potential function.
This approach naturally introduces the notion of well-linkedness, a standard tool for studying
flows and cuts, in order to refine the partition. Additionally, we must stop recursion at sets with
sufficiently sparse boundary to guarantee that the recursion terminates without branching expo-
nential times. The recursion results in a decomposition of V \ T into at most kc clusters, each
of which is either a connectivity-c well-linked set or a set with sparse boundary. Then we con-
tract the connectivity-c well-linked sets and change the sets with sparse boundary into equivalent
connectivity-c mimicking networks with O(c3) edges. This procedure results in the following
theorem.

Theorem 4.1 For a graph G with k terminals, there is a subset E′ of E(G) such that the size of E′ is O(kc4)
and the graph with all edges except E′ contracted, G/(E\E′), is (T , c)-equivalent to G.

To this end, we elaborate the procedure with details in Section 4.1.1. To handle sets with sparse
boundary, we use a known kernelization result based on matroid theory and the representative
sets lemma. Unfortunately, these results mostly discuss vertex cuts, so in Section 4.3 we build
a gadget to transform a given graph, from which we wish to obtain a connectivity-c mimicking
network, into a new graph whose minimum vertex cut of any partition of terminals corresponds
to a minimum edge cut of the corresponding partition of terminals in the original graph.

4.1.1 Existence Proof: POLYSIZEDCNETWORK

As discussed in Section 3, it is desirable to find connectivity-c well-linked sets, because they can
be contracted without changing connectivity. Its proof is deferred to Appendix A.2.

Lemma 4.2 Let X be a connectivity-c well-linked set in G, and T be terminals disjoint with X (i.e. X ∩
T = ∅). Then G/X is (T , c)-equivalent to G.
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H = POLYSIZEDCNETWORK(G)
Input: undirected unweighted multi-graph G.
Output: a connectivity-c mimicking network H.

If |∂G| ≤ 2c− 1:
- Return, based on Lemma 4.4, a (T ′, c)-equivalent connectivity-c mimicking network

with terminals T ′, where T ′ is the set of vertices incident to boundary edges ∂G.
Else:

- Find a violating cut (V1, V2) if it exists and then, return POLYSIZEDCNET-
WORK(G[V1]) and POLYSIZEDCNETWORK(G[V2]).

- If no violating cut exists, contract G to a single vertex.
Return a connectivity-c mimicking network H.

Figure 1: Pseudocode for POLYSIZEDCNETWORK

The recursive procedure POLYSIZEDCNETWORK takes a subset X of V \ T and bisects it if there
exists a violating cut. Since finding a violating cut EG(A, B) of X guarantees that |∂A|, |∂B| < |∂X|,
the recursion ends up reaching the base case in which the number of boundary edges is at most
2c− 1. If there are no violating cuts, contracting X also halts the recursion.

Hence, POLYSIZEDCNETWORK(V \ T ) just partitions V \ T into pieces being either connectivity-c
well-linked sets or sets whose number of boundary edges is at most 2c− 1. The contraction of a
connectivity-c well-linked set for (T , c)-equivalency is justified by Lemma 4.2. Also, Corollary 2.4
and Lemma 2.5 justify the replacement of a set X with no terminals by a (T ′, c)-equivalent graph,
where we introduce boundary vertices in X as the tentative terminals T ′.
The number of edges in a connectivity-c mimicking network returned by the procedure depends
on (i) the number of pieces, and (ii) how small equivalent sparsifiers a subgraph with O(c) bound-
ary edges has.

For (i), the number of smaller pieces being either connectivity-c well-linked or |∂X| ≤ 2c − 1
simply matches with the number of branching during the recursion induced by the existence of a
violating cut. It is bounded by the following decreasing invariant, which decreases by at least 1
for each branching.

Lemma 4.3 When POLYSIZEDCNETWORK splits a given X into {Xi}l
i=1, ∑i≤l max(|∂(Xi)| − 2c +

1, 0) is a decreasing invariant with respect to separation induced by a violating cut for some Xi.

Proof: The number of pieces only increases when a piece X is divided into A and B by finding a
violating cut. Denote k = |∂X|, k1 = |∂A ∩ ∂X|, k2 = |∂B ∩ ∂X|, and l = |EG(A, B)|. Note that
|∂A| = k1 + l and |∂B| = k2 + l. From the definition of a violating cut, we have l < min(k1, k2, c)
and clearly, |∂A|, |∂B| < |∂X|. When X is divided, the term |∂X| − 2c+ 1 is replaced by max(|∂A| −
2c+ 1, 0)+max(|∂B| − 2c+ 1, 0). If either A or B happens to have less than 2c− 1 boundary edges,
the latter term is strictly smaller. Now, let |∂A|, |∂B| ≥ 2c− 1. Then,

|∂A| − 2c + 1 + |∂B| − 2c + 1 = k1 + l − 2c + 1 + k2 + l − 2c + 1
= k− 2c + 1 + 2(l − c) + 1 < k− 2c + 1.
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The above lemma says that the number of branching is bounded by |∂X| since the decreasing
invariant begins with |∂X|. By the assumption that terminals have degree at most c, we have
|∂(V \ T )| pieces, which is upper bounded by kc.

For (ii), due to a tricky preprocessing on boundary edges as in Lemma 4.14, we may assume that a
set with O(c) boundary edges can be viewed as a set with O(c) tentative terminals, each of which
has degree 1. This preprocessing gives rise to the following lemma with its proof presented in
Section 4.3.

Lemma 4.4 Let G = (V, E) be a graph with a set T of O(c) terminals and each terminal have degree 1.
There is a subset E′ of E with |E′| = O(c3) and G/(E\E′) is a connectivity-c mimicking network for G.

We can combine series of lemmas to show Theorem 4.1.

Proof of Theorem 4.1. We show that POLYSIZEDCNETWORK returns a connectivity-c mimicking
network with O(kc4) edges for a graph G. First, applying Lemma 4.3 shows that the total number
p of pieces in the partition V \ T = X1 ∪ X2 ∪ · · · ∪ Xp is at most kc, as |∂(V \ T )| ≤ kc by our
assumption that all terminals have degree at most c.

To bound the total number of edges in the final sparsifier, we must analyze two contributions.
First, the total number of boundary edges over all partition pieces is at most

∣∣⋃p
i=1(∂Xi)

∣∣ ≤ O(kc2),
as the total number of boundary edges may increase by c each time we split a partition piece into
two pieces, and there are at most kc pieces. The other contribution is from the partition pieces
Xi with |∂(Xi)| ≤ 2c− 1. The total number of edges from this is at most kc ·O(c3) = O(kc4) by
applying Lemma 4.4.

To verify that the returned graph is indeed a connectivity-c mimicking network, it suffices to
apply Lemma 4.2 to argue that we can contract well-linked pieces. Then we can use Corollary
2.4 to delete all boundary edges in

⋃p
i=1 ∂Xi, and then use Lemma 2.5 and build a connectivity-c

mimicking network on each Xi separately. □

4.2 Algorithm for the Optimal Sparsifiers: Contracting Non-Essential Edges

We use many forms of graph partitioning and operations, such as adding and deleting edges
among terminals (Lemma 2.2, 2.3, and Corollary 2.4), and connected components may be handled
separately (Lemma 2.5). These observations form the basis of our divide-and-conquer scheme,
which repeatedly deletes edges, adds terminals, and works on connected components of discon-
nected graphs. Our approach in fact utilizes expander decomposition elaborated in Section 4.2.1 to
split a graph into several expanders. Removing the inter-cluster edges, it sparsifies each expander
by contracting non-essential edges in the expander, the contraction of each still preserves the value
of a minimum cut up to c between any partition of terminals. Then it glues together all the spar-
sified expanders via the inter-cluster edges to obtain a connectivity-c mimicking network. This
one pass reduces the number of edges by half. Repeating several passes leaves essential edges in
the end, leading to the connectivity-c mimicking network of the optimal size, which is currently
O(kc4).
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Theorem 4.5 For a graph G with n vertices, m edges, and k terminals, there exists an algorithm which
successfully finds a connectivity-c mimicking network with O(kc4) edges in O(m(c log n)O(c)).

In fact, our algorithm guarantees a stronger property: If there exists a connectivity-c mimicking
network with k f (c) edges that can be obtained by only contracting edges in G, for some function
f , then our algorithm finds a connectivity-c mimicking network with O(k f (c)) edges. We present
the proof in three parts. In Section 4.2.1 and 4.2.2, we explain two sub-routines that are used in
our algorithm. The description of the algorithm is in Section 4.2.3.

4.2.1 Enumeration of Small Cuts via Expander Decomposition

To achieve Theorem 4.5, we utilize insights from recent results on finding c-vertex cuts [NSY19a,
NSY19b, FY19], namely that in a well connected graph, any cut of size at most c must have a very
small side. This notion of connectivity is formalized through the notion of graph conductance.

Definition 4.6 In an undirected unweighted graph G = (V, E), denote the volume of a subset of vertices,
vol(S), as the total degrees of its vertices. The conductance of a cut S is then

ΦG (S) =
|∂ (S)|

min {vol (S) , vol (V\S)} ,

and the conductance of a graph G = (V, E) is the minimum conductance of a subset of vertices:

Φ (G) = min
S⊆V

ΦG (S) .

We use expander decomposition to reduce to the case where the graph has high conductance.

Lemma 4.7 (Theorem 1.2 of [SW19]) There exists an algorithm EXPANDERDECOMPOSE that for any
undirected unweighted graph G and any parameter φ, decomposes in O(mφ−1 log4 n) time G into pieces
{Gi} of conductance at least φ so that at most O(mφ log3 n) edges are between the pieces.

Note that if a graph has conductance φ, any cut (S, V\S) of size at most c must have

min {vol (S) , vol (V\S)} ≤ cφ−1. (1)

In a graph with expansion φ, we can enumerate all cuts of size at most c in time exponential in c
and φ. As a side note, the time complexity of both the results in Theorem 1.1 are dominated by
the cO(c) term, essentially coming from this enumeration. Hence, a more efficient algorithm on
enumeration may open up the possibility toward a faster algorithm for finding a connectivity-c
mimicking network.

Lemma 4.8 In a graph G with n vertices and conductance φ, there exists an algorithm that enumerates all
cuts of size at most c with connected smaller side in time O(n(cφ−1)2c).

Proof: We first enumerate over all starting vertices. For a starting vertex u, we repeatedly perform
the following process.

1. Perform a DFS from u until it reaches more than cφ−1 vertices.
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2. Pick one of the edges among the reached vertices as a cut edge.
3. Remove that edge, and recursively start another DFS starting at u.

After we have done this process at most c times, we check whether the edges form a valid cut, and
store it if so.

By Equation 1, the smaller side of the cut involves at most cφ−1 vertices. Consider such a cut with
S as the smaller side, F = E(S, V \ S), and |S| ≤ cφ−1. Then if we picked some vertex u ∈ S as the
starting point, the DFS tree rooted at u must contain some edge in F at some point. Performing
an induction with this edge removed then gives that the DFS starting from u will find this cut.
Because there can be at most O((cφ−1)2) different edges picked among the vertices reached, the
total work performed in the c layers of recursion is O((cφ−1)2c).

It suffices to enumerate all such cuts once at the start, and reuse them as we perform contractions.

Lemma 4.9 If F is a cut in G/Ê, then F is also a cut in G.

Note that this lemma also implies that an expander stays so under contractions. So, we do not
even need to re-partition the graph as we recurse.

4.2.2 Sparsifying Procedure (φ-SPARSIFY )

We need a subroutine used to sparsify a graph with conductance φ and terminals T . This sub-
routine named as φ-SPARSIFY takes such a graph and enumerates all cuts of size at most c by a
smaller side through Lemma 4.8. Then it sparsifies the expander by checking if the contraction
of each edge still preserves (T , c)-equivalency. Formally, we can contract an edge e while pre-
serving (T , c)-equivalency if and only if for any partition (T1, T2) of terminals T , there exists a
(T1, T2)-mincut not containing the edge e. For convenience, we call such an edge e ∈ E(G) as
contractible in G. Sequentially checking all edges in G and contracting some if possible, we show
that φ-SPARSIFY only leaves at most O(|T |c4) “essential edges” which appear in a minimum cut
of any partition of the terminals.

Through the enumeration of all cuts of size at most c by a smaller side of the cut (Lemma 4.8),
φ-SPARSIFY forms an auxiliary graph H for efficient tracking of minimum cuts of partitions of
terminals as follows: V(H) is the disjoint union of P, C, and E0, where

1. P is the set of an induced partition of terminals T during the enumeration,
2. C is the set of a minimum cut separating a partition of terminals in P,
3. E0 is the set of edges included in a minimum cut in C,

and for p ∈ P, c ∈ C, and e ∈ E0, add an edge pc to E(H) if c is a minimum cut of p, and an edge
ce to E(H) if e ∈ c.

For a given query edge e ∈ E(G), the algorithm deletes all nodes (minimum cuts) N(e) ⊆ C, also
removing the incident edges to N(e). Then it checks if there is a node (partition p) in P whose
degree becomes 0 after the deletion. If so, it means that the edge e appears in all minimum cuts of
the partition p, leading the algorithm to undo the deletion. Otherwise, it means that the algorithm
may contract e and actually obtains a (T , c)-equivalent graph G/e.

In the case that it contracts a contractible edge e, we should make sure that the auxiliary graph
from G/e is equal to H with N(e) deleted. First of all, a minimum cut F of size at most c inducing
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a partition of terminals in G/e is also a cut of the partition in G (see Lemma 4.9). As G/e and G are
(T , c)-equivalent, F must be a minimum cut of the partition in G as well. For the opposite direc-
tion, a minimum cut of a partition of terminals in G, which does not contain e, is also a minimum
cut of the partition in G/e, since the value of minimum cuts non-decreases under contraction (see
Lemma 2.7). Therefore, we only need to enumerate all cuts of size at most c O(1) times and to cre-
ate an auxiliary graph at the very beginning of φ-SPARSIFY, and simply update the auxiliary graph
in response to contraction of edges without re-enumerating all cuts of size at most c in contracted
graphs.

In this way, scanning through each edge in sequence, φ-SPARSIFY checks if each edge is con-
tractible in G with contractible edges (in their turns) already contracted. In the end, it returns a
(T , c)-equivalent graph G/X, where X is the set of contractible edges in each turn.

Lemma 4.10 For a graph G with conductance φ, n vertices, m edges, and k terminals, the algorithm φ-
SPARSIFY returns a connectivity-c mimicking network with O(kc4) edges in O(m + nc(cφ−1)2c) time.

Proof: Observe that once an edge e is not contractible in its turn, e never becomes contractible
when checking other subsequent edges. In other words, for i < j, if the algorithm checks the edge
e in ith iteration and marks it as non-contractible, then e is still not contractible when checking
another edge in jth iteration. Hence, after checking all edges, the remaining edges E∗are not con-
tractible in G/(E− E∗). As Theorem 4.1 guarantees the existence of contractible edges as long as
the number of remaining edges are larger than O(kc4), so the graph with the contractible edges
contracted, G/(E− E∗), returned by φ-SPARSIFY has at most O(kc4) edges as well.

For the running time, the algorithm enumerates all minimum cuts of size at most c in O(n ·
(cφ−1)2c) and updating an auxiliary graph requires as many references as the number of edges
in the auxiliary graph. As each minimum cut has size at most c, double counting on the number
of edges results in the running time O(m + nc · (cφ−1)2c).

4.2.3 Putting things together

Now we join all the sparsified graphs via the removed inter-cluster edges and reduce the total
number of edges by half. Repeating this procedure until no more edges are contractible, we can
build a (T , c)-equivalent graph with at most O(kc4) essential edges. We present the algorithm
EFFICIENTPOLYSIZED with details in Figure 2 and with analysis as follows, where C′ is a constant
such that in Lemma 4.7 the number of edges between the pieces are at most C′mφ log3 n. Theorem
1.1 part 1 follows from the analysis of EFFICIENTPOLYSIZED.

Theorem 4.5 For a graph G with n vertices, m edges, and k terminals, the algorithm EFFICIENTPOLY-
SIZED successfully finds a connectivity-c mimicking network with O(kc4) edges in O(m · (c log n)O(c)).

Proof: By Corollary 2.4 and Lemma 4.10, EFFICIENTPOLYSIZED successfully finds a connectivity-
c mimicking network of G. For the size, we prove a more general statement that if the optimal
number of edges in a connectivity-c mimicking network of a graph with k terminals is k · p(c) for
a polynomial p, then EFFICIENTPOLYSIZED returns a sparsifier with O(kp(c)) edges.

We show by induction that after ith iteration, the number of remaining edges is at most
kp(c)∑i−1

r=0
1
2r +

m
2i , which is bounded by 2kp(c) + m

2i . Hence, after O(log m) iterations, the algo-
rithms yields a connectivity-c mimicking network with O(kp(c)) edges.
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G′ = EFFICIENTPOLYSIZED(G, T )
Input: undirected unweighted multi-graph G and terminals T .
Output: a connectivity-c mimicking network G′.

1. Set φ−1 = 4C′c4 log3 n for some C′.
2. {Gi} = EXPANDERDECOMPOSE(G, φ).
3. Remove the inter-cluster edges among {Gi} and add the endpoints of the edges as new

terminals to each piece with conductance φ.
4. G′i = φ-SPARSIFY(Gi, Ti ∪ (T ∩V(Gi))), where Ti is the set of new terminals in Gi.
5. G′ =

⋃
i G′i together with inter-cluster edges.

6. If |G′| < |G|, then go to line 2 with G = G′. Otherwise, return G′.

Figure 2: Pseudocode for EFFICIENTPOLYSIZED

Observe that φ = 1/(4C′p(c) log3 n) satisfies φ · (C′p(c) log3 n + C′ log3 n) ≤ 1
2 . In the first it-

eration, the total number of terminals is bounded by k + mC′φ log3 n. Hence, in line 5, the total
number of edges in G′ is bounded by

(k + mC′φ log3 n)p(c) + mC′φ log3 n ≤ kp(c) + mφ · (C′p(c) log3 n + C′ log3 n) ≤ kp(c) +
m
2

Using the similar argument for ith iteration and induction hypothesis, we have

(k + (kp(c)
i−2

∑
r=0

1
2r +

m
2i−1 )C

′φ log3 n)p(c) + (kp(c)
i−2

∑
r=0

1
2r +

m
2i−1 )C

′φ log3 n

≤ kp(c) + (kp(c)
i−2

∑
r=0

1
2r +

m
2i−1 )/2 ≤ kp(c)

i−1

∑
r=0

1
2r +

m
2i .

For time complexity part, it is dominated by φ-SPARSIFY which takes time O(m · cO(c) log6c n ·
log m) = O(m(c log n)O(c)) as desired.

4.3 Proof of Lemma 4.4: Transforming Edge Cuts to Vertex Cuts

As seen above, POLYSIZEDCNETWORK replaces a set with sparse boundary by a connectivity-
c mimicking network. Here we present a key lemma used for this subroutine, which reduces
our problem to the problem of identifying essential vertices in preserving the value of minimum
vertex cuts. The notion of vertex cuts is closely related with the notion of vertex-disjoint paths,
which takes advantages of a well-developed theory from gammoid and representative sets. The
following result in [KW12] is what we will make use of in essence.

Lemma 4.11 ([KW12]) Let G = (V, E) be a directed graph, and X ⊆ V a set of terminals. We can
identify a set Z of O(|X|3) vertices such that for any A, B ⊆ X, a minimum (A, B)-vertex cut in G is
contained in Z.

Note that the above lemma addresses a minimum vertex cut, not an edge cut and it holds under
digraphs setting. However, we can still replace digraphs with undirected graphs; for given an
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undirected graph G = (V, E), simply orient each edge in the both directions to obtain a directed
graph Ĝ and then apply the above result to Ĝ.

This simple but amazing result develops in the context of proving the usefulness of matroid theory
to kernelization. As a set of vectors in vector fields enjoys removal of redundant vectors through the
notion of linear independence, a general notion of independence potentially leads to identification
of important objects in a problem. A matroid is one which abstracts and generalizes the notion,
while especially developed in abstracting central notions in graph theory. Formally, for a given set
E, a matroid M = (E, I) means a collection I of all the ‘independent’ subsets of E. As motivated
from linear independence in vector fields, the most basic matroid is derived from a matrix A over
a field F and the sets of all sets of columns linearly independent over F. Some matroids M happen
to have an intrinsic matrix AM over F which represents the matroid in the way described above.
We call such matroids as linear matroids over F and its matrix AM as a representation matrix.

When a directed graph G = (V, E) with source vertices S ⊆ V is given, a gammoid collects all the
sets T ⊆ V to which there exists |T| vertex-disjoint paths from a subset of S. The size of the largest
such T is called the rank of the gammoid and naturally corresponds to the rank of matrices over
F. Among various matroids originated from graph theory, a gammoid naturally bridges the gap
between vertex cuts and matroid theory since the size of a minimum vertex cut between two sets
has to do with the number of vertex-disjoint paths between the two sets.

The last key notion is a q-representative set. For a given matroid (E, I), a family S of subsets of
size p and any given Y ⊆ E with |Y| ≤ q, a q-representative set Ŝ ⊆ S contains a set X̂ ⊆ E with
X̂ ∩ Y = ∅ and X̂ ∪ Y being independent (i.e., X̂ ∪ Y ∈ I) whenever S has such a set satisfying
the same condition.

The previous studies [Lov77, Mar09, KW12, FLPS16] have been eager to find a representative set
in polynomial time, which is also of independent interest, for a given representation matrix and
we introduce the following theorem.

Theorem 4.12 ([FLPS16]) Let M = (E, I) be a linear matroid of rank p + q = k given together with
its representation matrix AM over a field F. Let S = {S1, ..., St} be a family of independent sets of size p.
Then a q-representative family Ŝ for S with at most (p+q

p ) sets can be found in O((p+q
p )tpω + t(p+q

p )
ω−1

)

operations over F, where ω < 2.373 is the matrix multiplication exponent.

Since a gammoid is a linear matroid and its notion of independence highly has to do with a min-
imum vertex cuts of two sets, the notion of a representative set has a key connection to the fol-
lowing problem: In a directed graph G with vertex subsets S and T, can we find a set Z which
contains a minimum (A, B) vertex cut for any A ⊆ S and B ⊆ T? Even though a naı̈ve answer
can be Z = V(G), the identification of a representative set significantly reduces the size of Z with
dependencies on p, q, and |S| in the above setting.

The Subroutine We identify and contract unnecessary edges especially by using knowledge
from vertex sparsification preserving a vertex connectivity. To exploit such fruitful results, we
leverage a natural correspondence between edges and vertices via working on the line graph of
a graph. In this way, edges appearing in a minimum edge cut of a partition of terminals in the
original graph are given by identifying their corresponding vertices in the line graph through
Lemma 4.11, which contains a minimum vertex cut of any partition of terminals.
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Before making this connection clear, we can make a further assumption by preprocessing the
boundary edges of an induced subgraph. This preprocessing relies on the following, which readily
follows from Lemma 4.2.

Observation 4.13 Let G be a graph with terminals T and v ∈ V(G). A subdivision of an edge uv, which
is to replace an edge uv with a path uwv through a new vertex w, results in a (T , c)-equivalent graph.

Proof: The set {u, w} is a connectivity-c well-linked set.

Recall in POLYSIZEDCNETWORK that when H has at most 2c − 1 boundary edges, we mark the
endpoints in V(H) of the boundary edges ∂H (i.e., V(H) ∩ V(∂H)) as tentative terminals T̂ and
then replace H with a smaller equivalent one. In this case, despite |T̂ | ≤ 2c− 1, we do not know
how many incident edges T̂ would have. By Observations 4.13, we can assume not only that
|T̂ | = O(c), but also that each terminal has degree 1.

Lemma 4.14 When working on an induced subgraph H of a graph G with its tentative terminals T̂ coming
from the endpoints of the boundary edges in ∂H (i.e., V(H) ∩V(∂H)), we may assume that each terminal
in T̂ has degree 1.

Proof: Apply a subdivision of each boundary edge uv ∈ ∂H with v ∈ V(H), introducing one
vertex wuv. We extend H to the induced subgraph G[V(H)∪ {wuv : v ∈ V(H)∩V(∂H)}], denoted
by H′, and its boundary ∂(H′) becomes the edges uwuv for each u ∈ V(H)c ∩V(∂H).

When we work on H′ via Corollary 2.4, new terminals T̂ ′ becomes {wuv|uv ∈ ∂H}, and it is clear
that each terminal wuv has the unique neighbor v in H′ (i.e., degH′(wuv) = 1).

Note that this manipulation on boundary of a piece has no impact on boundary of other pieces.
When sparsifying a set with O(c) boundary edges, we can make the stronger assumption as in
Lemma 4.14; the piece has O(c) tentative terminals and each terminal has degree 1.

Lemma 4.4 Let G = (V, E) be a graph with a set T of O(c) terminals and each terminal have degree 1.
There is a subset E′ of E with |E′| = O(c3) and G/(E\E′) is a connectivity-c mimicking network for G.

Proof: Let v(e) be the corresponding vertex in the line graph L(G) for an edge e in E and vt be the
unique neighbor in G of each terminal t in T . We enlarge the line graph L(G) by adding a copy t′

of t with its unique edge t′v(tvt). Also let T ′ be the set of such terminal copies and L(G)′ be the
enlarged one.

Viewing T ′ as X in Lemma 4.11, we have a subset Z of V(L(G)′) with O(c3) vertices, which
contains a minimum (A′, B′)-vertex cut of any bipartition (A′, B′) of T ′. We slightly change Z as
follows: remove terminals t′ in Z (if any) and add the unique neighbor v(tvt) of each terminal t′.
Note that this perturbed set, denoted by Z′, still has O(c3) vertices but no intersection with T ′.
We show Z′ also contains a minimum vertex cut between any bipartition of terminals. Suppose
that a partition (A′, B′) of T ′ has a minimum vertex cut C overlapping with T ′. For any t′ ∈
C ∩ T ′, the minimum vertex cut C does not include the unique neighbor v(tvt) of t′; otherwise
C− t′ is a smaller minimum (A′, B′)-vertex cut. Thus we can replace C by another minimum cut
C − t′ + v(tvt). Repeating this operation on all terminals in C, we end up having a minimum
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(A′, B′)-vertex cut disjoint from T ′ such that the modified minimum vertex cut is contained in Z′

in light of the construction of Z′.

Lastly, we take E′ as {e ∈ E(G) : v(e) ∈ Z′} and claim G/(E\E′) is (T , c)-equivalent to G.
For partition (A, B) of T in G, a minimum edge cut C between A and B corresponds to a ver-
tex cut between A′ and B′ that consists of the corresponding vertices of the edges in C, thus
mincutL(G)′(A′, B′) ≤ mincutG(A, B). By similar reasoning for the opposite direction, we have
mincutL(G)′(A′, B′) ≥ mincutG(A, B) and thus mincutL(G)′(A′, B′) = mincutG(A, B). It implies
that even after contracting all edges in E\E′, we still retain an edge cut of size mincutG(A, B).

The last paragraph makes more sense by relying on the max-flow and min-cut theorem and the
Menger’s theorem. For example, there are mincutG(A, B) edge-disjoint paths between A and B,
which can be exactly transformed into mincutG(A, B) vertex-disjoint paths between A′ and B′. It
implies that a minimum (A′, B′)-vertex cut has size at least mincutG(A, B) (i.e., mincutG(A, B) ≤
mincutL(G)′(A′, B′)).

After sparsifying the enlarged piece H′ with O(c) boundary edges into a smaller equivalent graph
with O(c3) edges, the all edges wuvv for each v ∈ H still remain, since Z′ contains the vertex
v(wuvv) and so E′ also contains wuvv. As {wuv, v} is a connectivity-c well-linked set, we may
contract it as if there were no any operations introducing additional vertices wuv at the very be-
ginning. Therefore, our sparsifier with O(kc4) edges can be still found by only contracting edges,
which means outputs of our algorithm in Section 4.2 have at most O(kc4) edges as well.

5 More Efficient Algorithms for Connectivity-c Mimicking Networks

In this section we present a faster algorithm at the expense of the size by using the notion of
“important” edges elaborated in Section 5.1.

Equipped with these notions, we prove the existence of connectivity-c mimicking networks con-
structed from important edges in Section 5.2.1. Then we revisit in Section 5.2.2 the original ap-
proach for speedup (in Section 5.2.1) and achieve a result implying Theorem 1.1 Part 2 by utilizing
expander decomposition and local cut algorithms in Section 5.2.3.

5.1 Equivalence, Cut Containment, and Cut Intersection

Our faster recursive algorithm works more directly with the notion of equivalence defined in
Definition 2.1. This algorithm identifies a set of important edges, Ê, and forms H by contracting
all edges in E \ Ê.

Observe that as long as Ê is small, contracting E \ Ê still results in a graph with few vertices
and edges. Therefore, our goal is find a set Ê of important edges to keep in H such that the
size of Ê is not much larger than |T |. We will show for the purpose of being (T , c)-equivalent, a
sufficient condition is that every (T , c)-cut can be formed using edges from only Ê. This leads to
the definition of Ê containing all (T , c)-cuts, which was also used in [MS18] for the c ≤ 5 setting.

Definition 5.1 (Cut containment) In a graph G = (V, E) with terminals T , a subset of edges Econtain ⊆
E is said to contain all (T , c)-cuts if for any partition T = T1 ·∪ T2 with mincutG(T1, T2) ≤ c there is a
cut F ⊆ Econtain such that

1. F has size equal to mincutG(T1, T2),
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2. F is also a cut between T1 and T2. That is, T1 and T2 are disconnected in G \ F.

Note that this is different than containing all the minimum cuts: on a length n path with two
endpoints as terminals, any intermediate edge contains a minimum terminal cut, but there are up
to n− 1 different such minimum cuts.

If Econtain contains all (T , c)-cuts, we may contract all edges in E \ Econtain to obtain a (T , c)-
equivalent graph H of G.

Lemma 5.2 If G = (V, E) is a connected graph with terminals T , and Econtain is a subset of edges that
contain all (T , c)-cuts, then the graph

H = G/
(

E\Econtain
)

is (T , c)-equivalent to G, and has at most |Econtain|+ 1 vertices.

Proof: Consider any cut using entirely edges in Econtain: contracting edges from E\Econtain will
bring together vertices on the same side of the cut. Therefore, the separation of vertices given by
this cut also exists in H as well.

To bound the size of H, observe that contracting all edges of G brings it to a single vertex. That is,
H/Econtain is a single vertex: uncontracting an edge can increase the number of vertices by at most
1, so H has at most |Econtain|+ 1 vertices.

We can also state Corollary 2.4 and Lemma 2.5 in the language of edge containment.

Lemma 5.3 Let Ê be a set of edges in G with endpoints V(Ê), and T be terminals in G. If edges Econtain

contain all (T ∪V(Ê), c)-cuts in G\Ê, then Econtain ∪ Ê contains all (T , c)-cuts in G.

Lemma 5.4 If the edges Econtain
1 ⊆ E(G1) contain all (T1, c)-cuts in G1, and the edges Econtain

2 ⊆ E(G2)
contain all (T2, c)-cuts in G2, then Econtain

1 ∪ Econtain
2 contains all the (T1 ∪ T2, c)-cuts in the vertex disjoint

union of G1 and G2.

These motivate us to gradually build up Econtain through a further intermediate definition.

Definition 5.5 In a graph G = (V, E) with terminals T , a subset of edges Eintersect ⊆ E intersects all
(T , c)-cuts for some c > 0 if for any partition T = T1 ·∪ T2 with mincutG(T1, T2) ≤ c, there exists a cut
F = E(V1, V2) such that:

1. F has size mincutG(T1, T2),
2. F induces the same separation of T : V1 ∩ T = T1, V2 ∩ T = T2.
3. F contains at most c− 1 edges from any connected component of G\Eintersect.

Reduction to Cut Intersection Based on Definition 5.5, we can reduce the problem of finding a
set Econtain which contains all (T , c)-cuts to the problem of finding a set Eintersect which intersects all
small cuts. Formally, the deletion of an intersecting edge set Eintersect separates (T , c)-cuts of G into
edge sets of size c− 1. Each of these smaller cuts happens on one of the connected components of
G \ Eintersect, and can thus be considered independently when we construct the containing sets of
G \ Eintersect.
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Econtain = GETCONTAININGEDGES(G, T , c)
Input: undirected unweighted multi-graph G, terminals T , cut threshold c.
Output: set of edges Eintersect that intersects all (T , c)-cuts.

1. Initialize Econtain ← ∅.
2. For ĉ← c . . . 1 in decreasing order:

(a) Econtain ← Econtain ∪ GETINTERSECTINGEDGES(G, T , ĉ).
(b) G ← G\Econtain.
(c) T ← T ∪V(Econtain), where V(Econtain) is the endpoints of all edges in Econtain.

3. Return Econtain.

Figure 3: Pseudocode for finding a set of edges that contain all the (T , c)-cuts.

This is done by first finding an intersecting set Eintersect, and then recursing on each component
in the (disconnected) graph with Eintersect removed, but with the endpoints of Eintersect included as
terminals as well. This will increase the number of edges and terminals, but allow us to focus on
(c − 1)-connectivity in the components, leading to our recursive scheme. The overall algorithm
simply iterates this process until c reaches 1, as shown in Figure 3. All arguments until now can
be summarized as the following stitching lemma.

Lemma 5.6 Let G = (V, E) be a graph with terminals T , and Eintersect ⊆ E be a set of edges that intersects
all (T , c)-cuts. For T̂ = T ∪ V

(
Eintersect), let Econtain ⊆ E \ Eintersect be a set of edges that contains all

(T̂ , c− 1) cuts in the graph (V, E\Eintersect). Then Econtain ∪ Eintersect contains all (T , c)-cuts in G.

Proof: Consider a partition T = T1 ·∪ T2 with mincutG(T1, T2) ≤ c. Since Eintersect intersects all
(T , c)-cuts, there is cut of size ĉ separating T1 and T2, which has at most c − 1 edges in each
component of G\Eintersect.

Combining this with Lemmas 5.3 and 5.4 shows that if Econtain contains all (T ∪V(Eintersect), c− 1)-
cuts in G\Eintersect, then Econtain ∪ Eintersect contains all (T , c)-cuts in G.

The following theorem shows the bounds for generating a set of edges Eintersect that intersects all
(T , c)-cuts. Its correctness follows from Lemma 5.6.

Theorem 5.7 For any parameter φ, value c, and graph G with terminals T , there exists an algorithm that
generates a set of edges Eintersect that intersects all (T , c)-cuts:

1. with size at most O((φm log4 n + |T |) · c) in Õ(m(cφ−1)2c) time.
2. with size at most O((φm log4 n + |T |) · c2) in Õ(mφ−2c7) time.

While Theorem 5.7 Part 1 developed in Section 5.2.1 provides a slow subroutine, we are able to
modify the argument in Section 5.2.2 and then take further steps, expander decomposition and
local cut algorithms, in Section 5.2.3 to obtain Theorem 5.7 Part 2.

In essence, we use Theorem 5.7 Part 2 to prove Theorem 1.1 Part 2 in Appendix A.3. As the size of
Econtain multiplies by O(c2) every iteration, the total size of Econtain at the end is O(c)2c, as desired
in Theorem 1.1 Part 2.
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5.2 Efficient Algorithm: Recursive Constructions

In this section, we give recursive algorithms for finding sets of edges that intersect all (T , c)-cuts
(as defined in Definition 5.5). In Section 5.2.1, we show the existence of a small set of edges that
intersects all (T , c)-cuts. In Section 5.2.2, we give a polynomial-time construction that outputs a
set of edges whose size is slightly larger than those given in Section 5.2.1.

Our routines are based on recursive contractions. Suppose we have found a terminal cut F =
E(V1, V2). Then any cut F̂ overlapping with both G[V1] and G[V2], or F, will have only at most
c− 1 edges in common with G[V1] or G[V2]. Thus, it suffices for us to focus on cuts that lie entire
in one half, which we assume without loss of generality is G[V1].

Since none of the edges in F and G[V2] are used, we can work equivalently on the graph with all
these edges contracted. The progress made by this, on the other hand, may be negligible: consider,
for example, the extreme case of F being a matching, and no edges are present in G[V2]. On the
other hand, if G[V2] is connected, then it will become a single terminal vertex in addition to V1,
and the two halves that we recurse on add up to a size that’s only slightly larger than G.

Thus, our critical starting point is to look for cuts (V1, V2), where both G[V1] and G[V2] are con-
nected, and contain two or more terminals. We first look for such cuts through exhaustive enumer-
ation in Section 5.2.1, and show that when none are found, we can simply terminate by taking all
minimum cuts with one terminal on one side, and the other terminals on the other side. Unfortu-
nately, we do not have a polynomial time algorithm for determining the existence of a cut (V1, V2)
with size at most c such that both G[V1] and G[V2] are connected and have at least 2 terminals.

In Section 5.2.2, we take a less direct, but poly-time computable approach based on computing
the minimum terminal cut among the terminals T . Both sides of this cut are guaranteed to be
connected by the minimality of the cut. However, we cannot immediately recurse on this cut due
to it possibly containing only one terminal on one side. We address this by defining maximal
terminal separating cuts: minimum cuts with only that terminal on one side, but containing as
many vertices as possible. The fact that such cuts can only grow c times until their sizes exceed c
allows us to bound the number of cuts recorded by the number of terminals, times an extra factor
of c, for a total of O(kc2) edges in the sparsifier.

5.2.1 Existence

Our divide-and-conquer scheme relies on the following observation about when (T , c)-cuts are
able to interact completely with both sides of a cut.

Lemma 5.8 Let F be a cut given by the partition V = V1 ·∪ V2 in G = (V, E) such that both G[V1]
and G[V2] are connected, and T1 = V1 ∩ T and T2 = V2 ∩ T be the partition of T induced by this cut.
If Eintersect

1 intersects all (T1 ∪ {v2}, c)-terminal cuts in G/V2, the graph formed by contracting all of V2
into a single vertex v2, and similarly Eintersect

2 intersects all (T2 ∪ {v1}, c)-terminal cuts in G/V1, then
Eintersect

1 ∪ Eintersect
2 ∪ F intersects all (T , c)-cuts in G as well.

Proof: Consider some cut F̂ of size at most c. If F̂ uses an edge from F, then it has at most c− 1
edges in G\F, and thus in any connected component as well. If F̂ has at most c− 1 edges in G[V1],
then every connected component in (G \ F) \ Eintersect

1 has at most c− 1 edges from F̂. This follows
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because removing F has already disconnected V1 and V2, and removing Eintersect
1 can only further

disconnects the remaining components.

The only remaining case is when F̂ is entirely contained in one of the sides. Without loss of gen-
erality assume that F̂ is entirely contained in V1, i.e., F̂ ⊆ E(G[V1]). Because no edges from G[V2]
are removed and G[V2] is connected, all of T2 must be on one side of the cut, and can therefore
be represented by a single vertex v2. Using the induction hypothesis on the cut F̂ in G/V2 with
the terminal separation given by all of T2 replaced by v2 gives that F̂ has at most c − 1 edges
in any connected component of (G/V2) \Eintersect

1 . Since connected components remain intact un-
der contracting connected subsets, we conclude that F̂ has at most c− 1 edges in any connected
components of G\Eintersect

1 as well.

However, to make progress on such a partition, we need to contract at least two terminals together
with either V1 or V2. This leads to our key definition of a non-trivial T -separating cut:

Definition 5.9 A non-trivial (T , c)-cut is a separation of V into V1 ·∪V2 such that:

1. the subgraphs induced by V1 and V2 (i.e., G[V1] and G[V2]) are both connected.
2. |V1 ∩ T | ≥ 2, |V2 ∩ T | ≥ 2.

Such cuts are critical for partitioning and recursing on the two resulting pieces. The connectivity
of G[V1] and G[V2] is necessary for applying Lemma 5.8, and |V1 ∩ T | ≥ 2, |V2 ∩ T | ≥ 2 are
necessary to ensure that making this cut and recursing makes progress.

We now study the set of graphs G and terminals T for which a non-trivial cut exists. For example,
consider the case when G is a star graph (a single vertices with n− 1 vertex connected to it) and
all vertices are terminals. In this graph, the side of the cut not containing the center can only have
a single vertex; hence, there are no non-trivial cuts.

We can, in fact, prove the converse: if no such interesting separations exist, we can terminate by
only considering the |T | separations of T formed with one terminal on one of the sides. We define
these cuts to be the s-isolating cuts.

Definition 5.10 For a graph G with terminal set T and some s ∈ T , an s-isolating cut is a partition of
the vertices V = VA ·∪VB such that s is the only terminal in VA, i.e., s ∈ VA, (T \{u}) ⊆ VB.

Lemma 5.11 If T is a subset of at least 4 terminals in an undirected graph G that has no non-trivial
T -separating cut of size at most c, then the union of all s-isolating cuts of size at most c:

Eintersect ←
⋃

s∈T
mincutG({s},T \{s})≤c

mincut (G, {s} , T \ {s}) ,

contains all (T , c)-cuts of G.

Proof: Consider a graph with no non-trivial T -separating cut of size at most c, but there is a
partition of T , T = T1 ·∪ T2, such that the minimum cut between T1 and T2, V1 and V2, has at most
c edges, and |T1|, |T2| ≥ 2.

Let F be one such cut, and consider the graph

Ĝ = G/ (E\F) ,
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Eintersect = RECURSIVENONTRIVIALCUTS(G, T , c)
Input: undirected unweighted multi-graph G, terminals T , cut threshold c > 0.
Output: set of edges Eintersect that intersects all T separating cuts of size at most c

1. If |T | ≤ 4, return the union of the min-cuts of all 2|T |−1 ≤ 8 partitions of the terminals.
2. Initialize Eintersect ← ∅.
3. If there exists some non-trivial T -separating cut (V1, V2) of size at most c,

(a) Eintersect ← Eintersect ∪ E(V1, V2).
(b) Eintersect ← Eintersect ∪RECURSIVENONTRIVIALCUTS(G/V2, (T ∩V1)∪ {v2}, c) where

v2 is the vertex that V2 gets contracted to in G/V2.
(c) Eintersect ← Eintersect ∪RECURSIVENONTRIVIALCUTS(G/V1, (T ∩V2)∪ {v1}, c) where

v1 is the vertex that V1 gets contracted to in G/V1.

4. Else add all local terminal cuts to Eintersect:

(a) For all vertex v such that |mincut(G, v, T \v)| ≤ c, do

Eintersect ← Eintersect ∪mincut(G, v, T \v).

5. Return Eintersect.

Figure 4: Algorithm for finding a set of edges that intersects all terminal cuts of size ≤ c.

that is, we contract all edges except the ones on this cut. Note that Ĝ has at least 2 vertices.

Consider a spanning tree T of Ĝ. By minimality of F, each node of T must contain at least one
terminal. Otherwise, we can keep one edge from such a node without affecting the distribution of
terminal vertices.

We now show that no vertex of T can contain |T | − 1 terminals. If T has exactly two vertices,
then one vertex must correspond to T1 and one must correspond to T2, so no vertex has |T | − 1
terminals. If T has at least 3 vertices, then because every vertex contains at least one terminal, no
vertex in T can contain |T | − 1 vertices.

Also, each leaf of T can contain at most one terminal, otherwise deleting the edge adjacent to that
leaf forms a non-trivial cut.

Now consider any non-leaf node of the tree, say r. As r is a non-leaf node, it has at least two
different neighbors that lead to leaf vertices.

Let us make r the root of this tree and consider some neighbor of r, say x. If the subtree rooted at
x has more than 2 terminals, then cutting the rx edge results in two components, each containing
at least two terminals (the component including r has at least one other neighbor that contains a
terminal). Thus, the subtree rooted at x can contain at most one terminal, and must therefore be a
singleton leaf.

Hence, the only possible structure of T is a star centered at r (which may contain multiple termi-
nals) in which each leaf has exactly one terminal in it. This in turn implies that Ĝ must also be
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a star, i.e., Ĝ has the same edges as T but possibly with multi-edges. This is because any edges
incident to a leaf of a star forms a connected cut.

By minimality, each cut separating the root from a leaf is a minimal cut for that single terminal,
and these cuts are disjoint. Thus, taking the union of edges of all these singleton cuts gives a cut
that partitions T in the same way and has the same size.

Note that Lemma 5.11 is not claiming all the (T , c)-cuts of T are singletons. Instead, it says that
any (T , c)-cut can be formed from a union of single terminal cuts.

Combining Lemma 5.8 and 5.11, we obtain the recursive algorithm in Figure 4, which demon-
strates the existence of O(|T | · c) sized (T , c)-cut-intersecting subsets. If there is a non-trivial T -
separating cut, the algorithm in Line 3 finds it and recurses on both sides of the cut using Lemma
5.8. Otherwise, by Lemma 5.11, the union of the s-isolating cuts of size at most c contains all
(T , c)-cuts, so the algorithm keeps the edges of those cuts in Line 4a.

Lemma 5.12 RECURSIVENONTRIVIALCUTS as shown in Figure 4 correctly returns a set of (T , c)-cut-
intersecting edges of size at most O(|T | · c).

Proof: The correctness of the algorithm can be argued by induction. The base case, where we
terminate by adding all min-cuts with one terminal on one side, follows from Lemma 5.11, while
the inductive case follows from applying Lemma 5.8.

It remains to bound the size of Eintersect returned. Once again there are two cases: The first case
is when we terminate with the union of singleton cuts. Each such cut has size at most c, thus
summing to the total of |T | · c.

The second is the recursive case, which can be viewed as partitioning k ≥ 4 terminals into two
instances of sizes k1 and k2 where k1 + k2 = k + 2 and k1, k2 ≥ 3. Note that the total values of
|TERMINALS| − 2 across all the recursion instances is strictly decreasing, and is always positive.
So, the recursion can branch at most |T | times, implying that the total number of edges added is
at most O(c · |T |).
In fact, we may modify RECURSIVENONTRIVIALCUTS to take extra steps for marginal speedup by
utilizing expander decomposition.

Proof of Theorem 5.7 Part 1. First, we perform expander decomposition, remove the inter-cluster
edges, and add their endpoints as terminals.

Now, we describe the modifications to RECURSIVENONTRIVIALCUTS that make it efficient.

Lemma 2.3 and Lemma 2.5 allow us to consider the pieces separately.

Now at the start of each recursive call, enumerate all cuts of size at most c, and store the vertices
on the smaller side, which by Equation 1 above has size at most O(cφ−1). When such a cut is
found, we only invoke recursion on the smaller side (in terms of volume). For the larger piece, we
can continue using the original set of cuts found during the search.

To use a cut from a pre-contracted state, we need to:

1. check if all of its edges remain (using a union-find data structure).
2. check if both portions of the graph remain connected upon removal of this cut – this can be

done by explicitly checking the smaller side, and certifying the bigger side using a dynamic
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connectivity data structure by removing all edges from the smaller side.

Since we contract each edge at most once, the total work done over all the larger side is at most

Õ
(

m
(

cφ−1
)2c
)

,

where we have included the logarithmic factors from using the dynamic connectivity data struc-
ture. Furthermore, the fact that we only recurse on things with half as many edges ensures that
each edge participates in the cut enumeration process at most O(log n) times. Combining these
then gives the overall running time. □

5.2.2 Polynomial-Time Construction

It is not clear to us how the previous algorithm in Section 5.2.1 could be implemented in polyno-
mial time. While incorporating expander decomposition makes our algorithm faster, its running
time still has the logO(c) n term (as stated in Theorem 5.7 Part 1). In this section, we give a more
efficient algorithm that returns sparsifiers of larger size, but ultimately leads to the faster running
time given in Theorem 5.7 Part 2. It was derived by working backwards from the termination
condition of taking all the cuts with one terminal on one side in Lemma 5.11.

Recall that a terminal cut is a cut with at least one terminal one both sides. The algorithm has the
same high level recursive structure, but it instead only finds the minimum terminal cut or certifies
that its size is greater than c. This takes O(m + nc3 log n) time using an algorithm by Cole and
Hariharan [CH03].

Theorem 5.13 (Minimum Terminal Cut [CH03]) Given graph G with terminals T and constant c,
there is an O(m + nc3 log n) time algorithm which computes the minimum terminal cut on T or certi-
fies that its size is greater than c.

It is direct to check that both sides of a minimum terminal cut are connected. This is important
towards our goal of finding a non-trivial T -separating cut, defined in Definition 5.9.

Lemma 5.14 If (VA, VB) is the global minimum T -separating cut in a connected graph G, then both G[VA]
and G[VB] must be connected.

Proof: Suppose for the sake of contradiction that VA is disconnected as VA = VA1 ·∪VA2. Without
loss of generality assume VA1 contains a terminal. Also, VB contains at least one terminal because
(VA, VB) is T -separating.

Then as G is connected, there is an edge between VA1 and VB. Then the cut (VA1, VA2 ∪ VB) has
strictly fewer edges crossing, and also terminals on both sides, a contradiction to (VA, VB) being
the minimum T -separating cut.

The only bad case that prevents us from recursing is when the minimum terminal cut has a single
terminal s on some side. That is, one of the s-isolating cuts from Definition 5.10 is also a minimum
terminal cut. We can cope with it via an extension of Lemma 5.8. Specifically, we show that for a
cut with both sides connected, we can contract a side of the cut along with the cut edges before
recursing.
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Lemma 5.15 Let F be a cut given by the partition V = V1 ·∪V2 in G = (V, E) such that both G[V1] and
G[V2] are connected, and T1 = V1 ∩ T and T2 = V2 ∩ T be the partition of T induced by this cut. If
Eintersect

1 intersects all (T1 ∪ {v2}, c)-terminal cuts in G/V2/F, the graph formed by contracting all of V2
and all edges in F into a single vertex v2, and similarly Eintersect

2 intersects all (T2 ∪ {v1}, c)-terminal cuts
in G/V1/F, then Eintersect

1 ∪ Eintersect
2 ∪ F intersects all (T , c)-cuts in G.

Proof: Consider some cut F̂ of size at most c. If F̂ uses an edge from F, then it has at most c− 1
edges in G\F, and thus in any connected component as well. If F̂ has at most c− 1 edges in G[V1],
then no connected component in V1 can have c or more edges because removing F already discon-
nected V1 and V2, and removing Eintersect

1 can only further disconnect the remaining components.

The only remaining case is when F̂ is entirely contained on one of the sides. Without loss of
generality assume F̂ is entirely contained in V1, i.e., F̂ ⊆ E(G[V1]). Because no edges from G[V2]
and F are removed and G[V2] is connected, all edges in G[V2] and F must not be cut and hence can
be contracted into a single vertex v2. Using the induction hypothesis on the cut F̂ in G/V2/F with
the terminal separation given by all of T2 replaced by v2 gives that F̂ has at most c− 1 edges in any
connected component of (G/V2/F) \Eintersect

1 . Since connected components are unchanged under
contracting connected subsets, we get that F̂ has at most c− 1 edges in any connected components
of G\Eintersect

1 as well.

Now, a natural way to handle the case where a minimum terminal cut has a single terminal s on
some side is to use Lemma 5.15 to contract across the cut to make progress. However, it may be
the case that for some s ∈ T , there are many minimum s-isolating cuts: consider for example the
length n path with only the endpoints as terminals. If we always pick the edge closest to s as the
minimum s-isolating cut, we may have to continue n rounds, and thus add all n edges to our set
of intersecting edges.

To remedy this, we instead pick a “maximal” s-isolating minimum cut. One way to find a maximal
s-isolating cut is to repeatedly contract across an s-isolating minimum cut using Lemma 5.15 until
its size increases. At that point, we add the last set of edges found in the cut to the set of inter-
secting edges. We have made progress because the value of the minimum s-isolating cut in the
contracted graph must have increased by at least 1. While there are many ways to find a maximal
s-isolating minimum cut, the way described here extends to our analysis in Section 5.2.3.

Pseudocode of this algorithm is shown in Figure 5, and the procedure for the repeated contractions
to find a maximal s-isolating cut described in the above paragraph is in Line 3d.

Discussion of algorithm in Figure 5. We clarify some lines in the algorithm of Figure 5. If the
algorithm finds a non-trivial T -separating cut as the minimum terminal cut, it returns the result
of the recursion in Line 3(c)i, and does not execute any of the later lines in the algorithm. In
Line 3(d)ii, in addition to checking that the s-isolating minimum cut size is still x, we also must
check that s does not get contracted with another terminal. Otherwise, contracting across that cut
makes global progress by reducing the number of terminals by 1. In Line 3(d)iiC, note that we
can still view s as a terminal in G ← G/V̂1/F, as we have assumed that this contraction does not
merge s with any other terminals.

Lemma 5.16 For any graph G, terminals T , and a value c, the algorithm RECURSIVETERMINALCUTS

as shown in Figure 5 runs in O(n2c4 log n) time and returns a set at most O(|T |c2) edges that intersect
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Eintersect = RECURSIVETERMINALCUTS(G, T , c)
Input: undirected unweighted multi-graph G, terminals T , cut threshold c > 0.
Output: set of edges Eintersect that intersect all T separating cuts of size at most c

1. At the top level, use Lemma 2.6 to reduce G to having at most nc edges.

2. Initialize Eintersect ← ∅.

3. While |T | > 4

(a) Compute a minimum terminal cut of G, V = V1 ·∪V2.

(b) If |E(V1, V2)| > c, return Eintersect.

(c) If each of V1 and V2 contains at least 2 terminals:

i. Return Eintersect ∪ RECURSIVETERMINALCUTS(G/V2, (T ∩ V1) ∪ {v2}, c) ∪
RECURSIVETERMINALCUTS(G/V1, (T ∩ V2) ∪ {v1}, c), where v1 and v2 are the
vertices formed upon contracting of V1 and V2 respectively.

(d) Else assume V1 contains one terminal s.

i. Record x ← |E(V1, V2)|.
ii. While the value of the minimum s-isolating cut is x and s has not been contracted

with another terminal (this runs at least once because (V1, V2) is a minimum T -
separating cut)
A. Let (V̂1, V̂2) be such a cut.
B. Record F ← E(V̂1, V̂2).
C. G ← G/V̂1/F.

iii. Eintersect ← Eintersect ∪ F.

4. For all 2|T |−1 ≤ 8 partitions of the terminals T

(a) If the corresponding min-cut has size at most c, add it to Eintersect.

5. Return Eintersect.

Figure 5: Recursive algorithm using minimum terminal cuts for finding a set of edges that intersect
all terminal cuts of size ≤ c.

all (T , c)-cuts.

Proof: We assume m ≤ nc throughout, as we can reduce to this case in O(mc) time by Lemma 2.6.
In line 3a, we use Theorem 5.13.

Note that the recursion in Line 3(c)i can only branch O(|T |) times, by the analysis in Lemma 5.12.
Similarly, the case where s gets contracted with another terminal in Line 3(d)ii can only occur
O(|T |) times.

Therefore, we only create O(|T |) distinct terminals throughout the algorithm. Let s be a terminal
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created at some point during the algorithm. By monotonicity of cuts in Lemma 2.7, the minimum
s-isolating cut can only increase in size c times. Hence, Eintersect is the union of O(|T |c) cuts of size
at most c. Therefore, Eintersect has at most O(|T |c2) edges.

To bound the runtime, we use the total number of edges in the graphs in our recursive algorithm
as a potential function. Thus, initially, this potential function has value m. Note that the recursion
of Line 3(c)i can increase the potential function by c; hence, the total potential function increase
throughout the algorithm is bounded by m + O(c|T |) = O(nc).

Each loop of Line 3(d)ii decreases our potential function by at least 1 from contractions. Thus, the
total runtime of the loop involving Line 3(d)ii can be bounded by

O (mc) + O
(
m + nc3 log n

)
= O

(
nc3 log n

)
,

where the former term is from running a maxflow algorithm up to flow c, and the latter is from
applying Theorem 5.13. As the total increase in the total potential function is at most O(nc), the
loop in Line 3(d)ii can only execute O(nc) times, for a total runtime of O(n2c4 log n) as desired.

Our further speedup of this routine in Section 5.2.3 also uses a faster variant of RECURSIVETER-
MINALCUTS as base case, which happens when |T | is too small. Here the main observation is
that a single maxflow computation is sufficient to compute a “maximal” s-isolating minimum cut,
instead of the repeated contractions performed in RECURSIVETERMINALCUTS.

Lemma 5.17 For any graph G, terminals T , and a value c, there is an algorithm that runs in O(mc +
n|T |c4 log n) time and returns a set at most O(|T |c2) edges that intersect all (T , c)-cuts.

Proof: We modify RECURSIVETERMINALCUTS as shown in Figure 5 and its analysis as given in
Lemma 5.16 above. Specifically, we modify how we compute a maximal s-isolating minimum cut
in Line 3(d)ii. For any partition T = T1 ·∪ T2, by submodularity of cuts it is known that there is a
unique maximal subset V1 ⊆ V such that

T1 ⊆ V1,
T2 ⊆ V\V1,

|E (V1, V2)| = |mincut (G, T1, T2)| .

Also, this maximal set can be computed in O(mc) time by running the Ford-Fulkerson augmenting
path algorithm with T2 as source and T1 as sink. The connectivity value of c means at most c
augmenting paths need to be found, and the set V2 can be set to the vertices that can still reach the
sink set T2 in the residual graph [FH75]. Now set V1 = V\V2. Thus by setting T1 ← {s}, we can
use the corresponding computed set V1 as the representative of the maximal s-isolating minimum
terminal cut.

Now we analyze the runtime of this procedure. First, we reduce the number of edges to at most
nc in O(mc) time. As in the proof of Lemma 5.16, all graphs in the recursion have at most O(nc)
edges. The recursion in Line 3(c)i can only branch |T | times, and we only need to compute
O(c|T |) maximal s-isolating minimum terminal cuts throughout the algorithm. Each call The-
orem 5.13 takes O(m + nc3 log n) = O(nc3 log n) time, for a total runtime of O(nc3 log n · c|T |) =
O(n|T |c4 log n) as desired.
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5.2.3 Using Local Cut Algorithms

A local cut algorithm is a tool that has recently been developed. Given a vertex v, there exists
a local cut algorithm that determines whether there is a cut of size at most c such that the side
containing v has volume at most ν in time linear in c and ν.

Theorem 5.18 (Theorem 3.1 of [NSY19b]) Let G be a graph and let v ∈ V(G) be a vertex. For a
connectivity parameter c and volume parameter ν, there is an algorithm running in time Õ(c2ν) that with
high probability either

1. Certifies that there is no cut of size at most c such that the side with v has volume at most ν.
2. Returns a cut of size at most c such that the side with v has volume at most 130cν.

We now formalize the notion of the smallest cut that is local around a vertex v.

Definition 5.19 (Local cuts) For a vertex v ∈ G, define LocalCut(v) to be

min
V=V1 ·∪V2

v∈V1
vol(V1)≤vol(V2)

|E(V1, V2)|.

We now combine Theorem 5.18 with the observation from Equation 1 in order to control the vol-
ume of the smaller side of the cut in an expander.

Lemma 5.20 Let G be a graph with conductance at most φ, and let T be a set of terminals. If |T | ≥
500c2 φ−1 then for any vertex s ∈ T we can with high probability in Õ(c3φ−1) time either compute
LocalCut(s) or certify that LocalCut(s) > c.

Proof: We run binary search on the size of the minimum terminal cut with s on the smaller side,
and apply Theorem 5.18. The smaller side of a terminal cut has volume at most cφ−1. Therefore,
if |T | ≥ 500c2φ−1, then the cut returned by Theorem 5.18 for ν = cφ−1 will always be a terminal
cut, as 130νc ≤ |T |/2. The runtime is Õ(νc2) = Õ(c3φ−1) as desired.

We can substitute this faster cut-finding procedure into RECURSIVETERMINALCUTS to get the
faster running time stated in Theorem 5.7 Part 2.

Proof of Theorem 5.7 Part 2. First, we perform expander decomposition, remove the inter-cluster
edges, and add their endpoints as terminals.

Now, we describe the modifications we need to make to Algorithm RECURSIVETERMINALCUTS

as shown in Figure 5. Let T̂ be the set of terminals at the top level of recursion. The recursion
gives that at most O(|T̂ |) distinct terminals are created in the recursion.

First, we terminate if |T | ≤ 500c2φ−1 and use the result of Lemma 5.17. Otherwise, instead of
using Theorem 5.13 for line 3a, we compute the terminal s ∈ T with minimal value of LocalCut(s).
This gives us a minimum terminal cut. If the corresponding cut is a non-trivial T -separating cut
then we recurse as in Line 3(c)i. Otherwise, we perform the loop in Line 3(d)ii.

We now give implementation details for computing the terminal s ∈ T with minimal value of
LocalCut(s). By Lemma 2.7 we can see that for a terminal s, LocalCut(s) is monotone throughout
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the algorithm. For each terminal s, our algorithm records the previous value of LocalCut(s) com-
puted. Because this value is monotone, we need only check vertices s whose value of LocalCut(s)
could still possibly be minimal. Now, either LocalCut(s) is certified to be minimal among all s,
or the value of LocalCut(s) is higher than the previously recorded value. Note that this can only
occur O(c|T̂ |) times, as we stop processing a vertex s if LocalCut(s) > c.

We now analyze the runtime. We first bound the runtime from the cases |T | ≤ 500c2φ−1. The
total number of vertices and edges in the leaves of the recursion tree is at most O(mc). Therefore,
by Lemma 5.17, the total runtime from these is at most

Õ(500c2φ−1 ·mc · c4) = Õ(mφ−1c7).

Now, the loop of Line 3(d)ii can only execute cφ−1 times because the volume of any s-isolating cut
has size at most cφ−1. Each iteration of the loop requires Õ(c3φ−1) time by Lemma 5.20. Therefore,
the total runtime of executing the loop and calls to it is bounded by

Õ
(

c|T̂ | · cφ−1 · c3φ−1
)
= Õ(|T̂ |φ−2c5).

Combining these shows Theorem 5.7 Part 2. □

6 Applications

We now discuss the applications of our connectivity-c mimicking networks in dynamic graph data
structures and parameterized algorithms.

6.1 Dynamic Offline c-edge-connectivity

In this section we formally show how to use connectivity-c mimicking network to obtain offline
dynamic connectivity routines.

Lemma 6.1 Suppose that an algorithm A(G′, S, c) returns a connectivity-c mimicking network with
f (c)|S| edges for terminals S on a graph G′ in time Õ(g(c)|E(G′)|). Then there is an offline algorithm
that on an initially empty graph G answers q edge insertion, deletion, and c-connectivity queries in total
time Õ( f (c)(g(c) + c)q).

Lemma 6.1 directly implies an analogous result when graph G is not initially empty, as we can
make the first m queries simply insert the edges of G.

We now state the algorithm OFFLINECONNECTIVITY in Figure 6 which shows Lemma 6.1. In
Figure 6 graph Gi for 0 ≤ i ≤ q denotes the current graph after queries Q1, · · · , Qi have been
applied.

Description of algorithm OFFLINECONNECTIVITY. The algorithm does a divide and conquer
procedure, computing connectivity-c mimicking network on the way down the recursion tree. As
the algorithm moves down the recursion tree, it adds edges to our graph that will exist in all
children of the recursion node. This is done in line 2a and 2c. The algorithm then computes all
vertices involved in queries in the children of a recursion node in lines 2b and 2d, and computes a
connectivity-c mimicking network treating those vertices as terminals, and recurses.
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F = OFFLINECONNECTIVITY(G, c, Q, ℓ, r)
Input: Undirected unweighted multi-graph G, parameter c, queries Q1, · · · , Qq, and indices
1 ≤ ℓ ≤ r ≤ q.
Output: Processes the queries Qℓ, Qℓ+1, · · · , Qr on graph G. If ℓ = r and the query Qℓ is a
connectivity query between vertices a and b, answers whether a and b have connectivity c in
graph G.

1. If ℓ = r and Qℓ is a c-connectivity query between a and b, run a maxflow up to c units
from a to b in G and return the result.

2. Otherwise, define m =
⌊
ℓ+r

2

⌋
.

(a) Set Eℓ,r
le f t as the edges that are in all of Gℓ, · · · , Gm but not in all of Gℓ, · · · , Gr.

(b) Set T ℓ,r
le f t as all vertices involved in queries Qℓ, · · · , Qm.

(c) Set Eℓ,r
right as the edges that are in all of Gm+1, · · · , Gr but not in all of Gℓ, · · · , Gr.

(d) Set T ℓ,r
right as all vertices involved in queries Qm+1, · · · , Qr.

(e) OFFLINECONNECTIVITY(A(G ∪ Eℓ,r
le f t, T

ℓ,r
le f t, c), c, Q, ℓ, m).

(f) OFFLINECONNECTIVITY(A(G ∪ Eℓ,r
right, T

ℓ,r
right, c), c, Q, m + 1, r).

Figure 6: Algorithm for offline connectivity

Proof: Correctness directly follows from the algorithm description and Lemma 2.3 – we are only
adding edges to our connectivity-c mimicking network as we progress down the recursion tree. It
suffices to bound the runtime.

It is straightforward to compute all the sets Eℓ,r
le f t and Eℓ,r

right in O(q log q) time. Additionally,

∑ℓ,r |Eℓ,r
le f t|+ |E

ℓ,r
right| ≤ O(q log q), where the sum runs over all pairs (ℓ, r) encountered in an exe-

cution of OFFLINECONNECTIVITY.

The graph G in a call to OFFLINECONNECTIVITY(G, c, Q, ℓ, r) has at most O( f (c)(r− ℓ)) edges by
the guarantees of algorithm A. Therefore, the runtime of calls to algorithm A is bounded by

Õ(g(c)) ·∑
ℓ,r

(
(r− ℓ) f (c) + |Eℓ,r

le f t|+ |E
ℓ,r
right|

)
≤ Õ(g(c)) ·

(
O(q log q) +

log q

∑
k=0

2k ·O( f (c)q · 2−k)

)
≤ Õ(g(c) f (c)q).

The cost of running line 1 is bounded by O(c · f (c)q) as each graph in the leaf recursion nodes has
at most O( f (c)) vertices. Hence the total runtime is at most Õ( f (c)(g(c) + c)q) as desired.

Combining Lemma 6.1 and Theorem 1.1 Part 2 immediately gives a proof of Theorem 1.2.
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Additionally, by adding / deleting edges from source / sinks, we can query for c-edge connectivity
between multiple sets of vertices efficiently on a static graph.

Corollary 6.2 Given a graph G with m edges, as well as query subsets (A1, B1), (A2, B2) . . . (Ak, Bk), we
can compute the value of mincutc

G(Ai, Bi) for all 1 ≤ i ≤ k in Õ
(
(m + ∑i |Ai|+ |Bi|)cO(c)

)
time.

6.2 Parameterized Algorithms for Network Design

In this section, we consider the rooted survivable network design problem (rSNDP), in which we
are given a graph G with edge-costs, as well as h demands (vi, di) ∈ V ×Z, i ∈ [h], and a root
r ∈ V. The goal is to find a minimum-cost subgraph that contains, for every demand (vi, di),
i ∈ [h], di edge-disjoint paths connecting r to vi.

We will show how to solve rSNDP optimally in the running time of f (c, tw(G))n, where c =
maxi di is the maximum demand, and tw(G) is the treewidth of G. Our algorithm uses the ideas of
Chalermsook et al. [CDE+18] together with connectivity-c mimicking networks. Our running time
is n exp

(
O(c4 tw(G) log(tw(G)c)

)
which is double-exponential in c, but only single-exponential

in tw(G) (whereas the result by Chalermsook et al. [CDE+18] is double-exponential in both c and
tw(G)).

Let (T, X) be a tree decomposition of G (see Section 6.2.1 for a definition). The main idea of our
algorithm is to assign, to each t ∈ T, a state representing the connectivity of the solution restricted
to Xt. By assigning these states in a manner that they are consistent across T, we can piece together
the solutions by looking at the states for each individual node. We will show that representing
connectivity by two connectivity-c mimicking networks is sufficient for our purposes, and that we
can achieve consistency across T by using very simple local rules between the state for a node t
and the states for its children t1, t2. These rules can be applied using dynamic programming to
compute the optimum solution.

Theorem 6.3 There is an exact algorithm for rSNDP on a graph G with treewidth tw(G) and maximum
demand c with a running time of n exp

(
O(c4 tw(G) log(tw(G)c)

)
.

The rest of this section is dedicated to proving the theorem above. In Section 6.2.1 we introduce
some concepts and assumptions used in our result; in Section 6.2.2 we show how to represent the
solution locally using connectivity-c mimicking networks, and how to make sure that all these
local representations are consistent; finally, in Section 6.2.3 we show how to use these ideas to
solve rSNDP.

6.2.1 Preliminaries

Tree Decomposition Let G be an undirected graph. A tree decomposition is a pair (T, X) where T
is a tree and X = {Xt ⊆ V(G)}t∈V(T) is a collection of bags such that:

1. V(G) =
⋃

t∈V(T) Xt, that is, every v ∈ V(G) is contained in some bag Xt;

2. For any edge uv ∈ E, there is a bag Xt that contains both u and v, i.e., u, v ∈ Xt;

3. For each vertex v ∈ V(G), the collection of nodes t whose bags Xt contain v induces a
connected subgraph of T, that is, T[{t ∈ V(T) : v ∈ Xt}] is a (connected) subtree.

32



We will use the term node to refer to an element t ∈ V(T), and bag to refer to the corresponding
subset Xt.

The treewidth of G, denoted tw(G), is the minimum width of any tree decomposition (T, X) for G.
The width of (T, X) is given by max |Xt| − 1.

Let G be a graph and (T, X) be its tree decomposition. We will say that each edge uv ∈ E(G)
belongs to a unique bag Xt, and write e ∈ Et if t ∈ T is the node closest to the root such that
u, v ∈ Xt. For a subset S ⊆ V(T), we define X (S) :=

⋃
t∈S Xt. Given a node t ∈ V(T), we denote

by Tt the subtree of T rooted at t and by p(t) the parent node of t in V(T). We also define Gt as the
subgraph with vertices X(Tt) and edges E(Gt) =

⋃
t′∈Tt

Et′ . For each v ∈ V, we denote by tv the
node closest to the root for which v ∈ Xtv .

Throughout this section, we will consider a tree decomposition (T, X) of G satisfying the following
properties (see [CDE+18]): (i) T has height O(log n); (ii) |Xt| ≤ O(tw(G)) for all t ∈ T; (iii) every
leaf bag contains no edges (Et = ∅ for all leaves t ∈ T); (iv) every non-leaf has exactly 2 children.
Additionally, we add the root r to every bag Xt, t ∈ T.

Vertex Sparsification In our application of connectivity-c mimicking networks to rSNDP, we
need graphs that preserve the thresholded minimum cuts for any disjoint sets T1, T2 ⊆ T (i.e. T1∪T2
may not include all terminals). Lemma 6.4 shows that this formulation is equivalent to that of
Definition 2.1. We write G ≡c

T H if G and H are (T , c)-equivalent according to the definition of
Lemma 6.4.

Lemma 6.4 Let G, H be graphs both containing a set of terminals T . G and H are (T , c)-equivalent if
and only if for any disjoint subsets of terminals T1, T2 ⊆ T , the thresholded minimum cuts are preserved
in H, i.e.,

mincutc
H (T1, T2) = mincutc

G (T1, T2) .

Proof: Note that if the condition above holds, G and H are trivially (T , c)-equivalent, since for
any partition T = T1 ·∪ T2, T1 and T2 are disjoint.

We now prove that if Definition 2.1 is satisfied, thresholded minimum cuts are preserved for any
disjoint subsets of terminals. Let T1, T2 ⊆ T be disjoint sets of terminals. Let (AG, BG), (AH, BH)
be the minimum cuts separating T1 and T2 in G and H, respectively. We know that

mincutc
G(AH ∩ T , BH ∩ T ) ≥ mincutc

G(AG ∩ T , BG ∩ T ),
since (AG, BG) is the minimum cut separating T1, T2 in G, and mincutc

G(AH ∩ T , BH ∩ T ) repre-
sents a cut which also separates T1, T2. A similar statement is also true for H.

Furthermore, we know mincutc
G(AH ∩T , BH ∩T ) = mincutc

H(AH ∩T , BH ∩T ) (and similarly for
(AG, BG)) by (Tc)-equivalence of G and H.

Combining everything, we get,

mincutc
H(AH ∩ T , BH ∩ T ) = mincutc

G(AH ∩ T , BH ∩ T ) ≥ mincutc
G(AG ∩ T , BG ∩ T )

= mincutc
H(AG ∩ T , BG ∩ T ) ≥ mincutc

H(AH ∩ T , BH ∩ T )

The circular chain of inequalities implies that

mincutc
G(AG ∩ T , BG ∩ T ) = mincutc

H(AH ∩ T , BH ∩ T )
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The definition of (AG, BG), (AH, BH) then implies that

mincutc
G(T1, T2) = mincutc

G(AG ∩ T , BG ∩ T ) = mincutc
H(AH ∩ T , BH ∩ T ) = mincutc

H(T1, T2)

6.2.2 Local Connectivity Rules

In this section, we will introduce the local connectivity rules which will allow us to assign states
in a consistent manner to the nodes of T. The states we will consider consist of two connectivity-
c mimicking networks roughly corresponding to the connectivity of the solution in E(Gt) and
E \ E(Gt). We then present some rules that make these states consistent across T, while only being
enforced for a node and its children.

We remark that this notation deviates from the one used by Chalermsook et al. [CDE+18], in which
states represent connectivity in E(Gt) and E. We do so because taking the union of overlapping
connectivity-c mimicking networks would lead to overcounting of the number of edge-disjoint
paths.

The following local definition of connectivity introduces the desired consistency rules that we
can use to define a dynamic program for the problem. Lemma 6.5 shows that a collection of
connectivity-c mimicking networks satisfy the local definition if and only if they represent the
connectivity in G with terminals given by a bag.

Definition 6.5 (Local Connectivity) We say that the pairs of connectivity-c mimicking networks
{(H′t,Ht)}t∈V(T) satisfy the local connectivity definition if

H′t ≡c
Xt

(Xt, ∅) for every leaf node t of T

Hroot(T) ≡c
Xt

(Xt, ∅)

and for every internal node t ∈ V(T) with children t1 and t2,

H′t ≡c
Xt

(Xt, Et) ∪H′t1
∪H′t2

Ht1 ≡c
Xt

(Xt, Et) ∪H′t2
∪Ht

where A ≡c
Xt

B means that mincutc
A(S1, S2) = mincutc

B(S1, S2) for all disjoint sets S1, S2 ⊆ Xt.

Lemma 6.6 Let G = (V, E) be a graph, and (T , X) its tree decomposition satisfying [the usual properties].
For every t ∈ V(T), let (H′t,Ht) be a pair as in Definition 6.5.

Then, the pairs {(H′t,Ht)}t∈T satisfy the local definitions if and only if for every t ∈ V(T ),

H′t ≡c
Xt

Gt

Ht ≡c
Xt

G \ E(Gt)

where A ≡c
Xt

B means that mincutc
A(S1, S2) = mincutc

B(S1, S2) for all disjoint sets S1, S2 ⊆ Xt.

Proof: We start by proving the statement for H′ by bottom-up induction, and then the one for H
by top-down induction. We will show that
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Let t ∈ T be a leaf of the tree decomposition. Then E(Gt) = ∅, so the statement immediately
follows. Consider now an internal node t with children t1, t2, and assume that the claim follows
for t1, t2. We will define H′t = (Xt, Et) ∪ H′t1

∪ H′t2
, and prove that H′t ≡c

Xt
Gt. That implies that

H′t ≡c
Xt

H′t (that is,H′t satisfies the local connectivity definition) if and only ifH′t ≡c
Xt

Gt.

Let S1, S2 ⊆ Xt, and F be the cutset for a mincut between S1 and S2 in E(Gt). We will use
cG(S1, S2) = mincutc

G(S1, S2) for conciseness (in this proof only). Then

cGt(S1, S2)

= min(c, |F|)
= min(c, |F ∩ Et|+ |F ∩ E(Gt1)|+ |F ∩ E(Gt2)|)
≥ min

(
c, cEt(S1, S2) + cE(Gt1 )

(S1 ∩ Xt1 , S2 ∩ Xt1

)
+ cE(Gt2 )

(S1 ∩ Xt2 , S2 ∩ Xt2))

= min
(
c, cEt(S1, S2) + cH′t1

(S1 ∩ Xt1 , S2 ∩ Xt1

)
+ cH′t2

(S1 ∩ Xt2 , S2 ∩ Xt2))

≥ cH′t (S1, S2)

The third inequality follows because each of the three terms corresponds to a min-cut between S1
and S2 for the respective edge sets. The fourth inequality follows by induction hypothesis, and
the final one follows by definition of H′t. For this last step, we crucially use that Xt1 ∩ Xt2 ⊆ Xt,
which means that any cut for Et, H′t1

and H′t2
uses disjoint edges and disjoint vertices outside of

Xt. These edges provide an upper bound for the cut cH′t .

Analogously, we can prove that cGt ≤ cH′t , by taking a set of edges F′ of H′t that realizes the
minimum cut in that graph. The same steps then apply to prove the desired inequality.

cH′t (S1, S2) = min(c, |F′|)
= min(c, |F′ ∩ Et|+ |F′ ∩ E(H′t1

)|+ |F′ ∩ E(H′t2
)|)

≥ min
(
c, cEt(S1, S2) + cH′t1

(S1 ∩ Xt1 , S2 ∩ Xt1

)
+ cH′t2

(S1 ∩ Xt2 , S2 ∩ Xt2))

= min
(
c, cEt(S1, S2) + cGt1

(S1 ∩ Xt1 , S2 ∩ Xt1

)
+ cGt2

(S1 ∩ Xt2 , S2 ∩ Xt2))

≥ cGt(S1, S2)

This concludes the first part of the proof.

For the second part of the proof, we will use top-down induction. For t = r, notice that E \ E(Gt) =
∅, so the statement follows. We now prove the equality for a node t1 with parent t and sibling t2.
Let Ht1 = (Xt, Et)∪H′t2

∪Ht, and prove that Ht ≡c
Xt

G \Gt. This implies the statement, as it shows
thatHt ≡c

Xt
Ht (that is,Ht satisfies the local connectivity definition) if and only ifHt ≡c

Xt
G \ Gt.
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Let S1, S2 ⊆ Xt1 , and F be the cutset for a mincut between S1 and S2 in E \ E(Gt1). Then

cE\E(Gt1 )
(S1, S2) = min(c, |F|)

= min(c, |F ∩ Et|+ |F ∩ (E \ E(Gt))|+ |F ∩ E(Gt2)|)
≥ min(c, cEt(S1 ∩ Xt, S2 ∩ Xt) + cE\E(Gt)(S1 ∩ Xt, S2 ∩ Xt)

+ cE(Gt2 )
(S1 ∩ Xt2 , S2 ∩ Xt2))

= min(c, cEt(S1 ∩ Xt, S2 ∩ Xt) + cHt(S1 ∩ Xt, S2 ∩ Xt)

+ cH′t2
(S1 ∩ Xt2 , S2 ∩ Xt2))

≥ cHt1
(S1, S2)

Similarly to the proof above, we use the fact that F ∩ Et, F ∩ (E \ E(Gt)), F ∩ E(Gt2) are cuts in
the subgraphs Et, G \ E(Gt), E(Gt2) respectively. The last step follows from the fact that the three
terms correspond to cuts in Et,Ht andH′t2

, and therefore their union forms a cut inHt ∪ Et ∪H′t2
.

Since Ht1 ≡c
Xt1
Ht ∪ Et ∪H′t2

, the inequality follows. The converse follows similarly:

cHt1
(S1, S2) = min(c, |F|)

= min(c, |F ∩ Et|+ |F ∩ E(Ht)|+ |F ∩ E(H′t2
)|)

≥ min(c, cEt(S1 ∩ Xt, S2 ∩ Xt) + cHt(S1 ∩ Xt, S2 ∩ Xt)

+ cH′t2
(S1 ∩ Xt2 , S2 ∩ Xt2))

= min(c, cEt(S1 ∩ Xt, S2 ∩ Xt) + cE\E(Gt)(S1 ∩ Xt, S2 ∩ Xt)

+ cE(Gt2 )
(S1 ∩ Xt2 , S2 ∩ Xt2))

≥ cE\E(Gt1 )
(S1, S2)

This completes the proof.

6.2.3 Dynamic Program for rSNDP

In this section, we present an algorithm for rSNDP on bounded-treewidth graphs, which uses
dynamic programming to compute a solution bottom-up. Our goal is to assign two connectivity-c
mimicking networks H′t, Ht to each node t ∈ T, corresponding to the connectivity of the solution
in E(Gt) and E \ E(Gt). We argue that any solution for Gt, t ∈ T that is compatible with a state
(H′t,Ht) can be interchangeably used, which implies that the dynamic program will obtain the
minimum-cost solution.

We define a dynamic programming table D, with entries D[t,H′,H], t ∈ T,H′,H a connectivity-c
mimicking networks with terminal set Xt. The entry D[t,H′,H] represents the minimum cost of
a solution F that is consistent with H′ (i.e. F ≡c

Xt
H′), such that F ∪ Ht satisfies all the demands

contained in Gt.

We compute D[t,H′,H] as follows:

• For any leaf t, set D[t, ∅,H] = 0 and D[t,H′,H] = +∞ forH′ ̸= ∅;

• For the root node root(T), set D[root(T),H′,H] = +∞ ifH ̸= ∅;
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• For any demand (vi, di), and t ∈ T such that vi ∈ Xt, set D[t,H′,H] = +∞ ifH′ ∪H contains
fewer than di edge-disjoint paths connecting r to vi.

For all other entries of T, compute it recursively as:

D[t,H′,H] = min
{

w(Y) + D[t1,H′1,H1] + D[t2,H′2,H2] : Y ⊆ Et,

H′ ≡c
Xt

Y ∪H′1 ∪H′2,

H1 ≡c
Xt1

Y ∪H ∪H′2,

H2 ≡c
Xt2

Y ∪H ∪H′1
}

We now want to prove that the dynamic program is feasible, i. e. that the entries D[root(T),H′, ∅]
correspond to feasible solutions; and that it is optimal, meaning that we will obtain the optimum
solution to the problem.

To prove that the dynamic program is feasible, notice that, by definition, any solution obtained
induces a choice of Yt,H′t,Ht for each t ∈ T. Let Y = ∪t∈T. The recursion formula of the dynamic
program implies that the pairs {(H′t,Ht)}t∈T satisfy the local connectivity definition with regard
to the graph (V, Y).

By Lemma 6.6, this implies that

H′t ≡c
Xt

Gt[Y],Ht ≡c
Xt

G[Y] \ E(Gt),

and hence,H′t ∪Ht ≡c
Xt

G[Y].

Let (vi, di) be a demand and t ∈ T be a node such that vi ∈ Xt. Since we know that H′t ∪ Ht
contains di edge-disjoint paths from r to vi (otherwise D[t,H′t,Ht] = +∞), then we know that the
minimum cut separating r from vi has at least di edges, which implies that Y must also contain di
edge-disjoint paths connecting r and vi.

For the converse, we will prove that any feasible solution F can be captured by the dynamic pro-
gram. Given F, it is sufficient to take H′t, Ht to be connectivity-c mimicking networks for Gt[F],
G[F] \ E(Gt), respectively. By Lemma 6.6 (applied to graph (V, F)), we know that {(H′t,Ht)}t∈T
satisfy the local connectivity definition for (V, F), and therefore D[t,H′t,Ht] can be computed re-
cursively from D[t1,H′t1

,Ht1 ], D[t2,H′t2
,Ht2 ], Yt = F ∩ Et.

Let (vi, di) be a demand and t ∈ T be a node such that vi ∈ Xt. Since F is a feasible solution, it
contains di edge-disjoint paths from r to vi, and therefore mincutc

F({r} , {vi}) ≥ di. This implies
that mincutc

H′t∪Ht
({r} , {vi}) ≥ di, and thus H′t ∪ Ht contains di edge-disjoint paths from r to vi

(and is a valid entry of T).

We conclude that the dynamic program above computes an optimum solution for rSNDP. By The-
orem 1.1, there is a connectivity-c mimicking network containing O(wc4) edges (and O(wc4) ver-
tices as well), for any graph with w terminals. Hence, there are at most(

|V|2
)|E|

=
(
w2c8)wc4

= exp
(

O(c4w log(wc))
)
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possibilities for such connectivity-c mimicking networks. This implies that the dynamic program-
ming table has n exp

(
O(c4 tw(G) log(tw(G)c)

)
entries. The work required to compute the value

of each entry takes time

exp
(

O(c4 tw(G) log(tw(G)c)
)
· wO(c) · poly(c, w)

(considering all combinations of states for children nodes, all disjoint subsets of terminals, com-
pute the min-cuts and check if they match).

We conclude that the running time of the algorithm is n exp
(
O(c4 tw(G) log(tw(G)c)

)
, which

completes the proof.
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A Deferred Proofs

A.1 Proof of Lemma 2.6

Consider the following routine: repeat c iterations of finding a maximal spanning forest from G,
remove it from G and add it to H.

Each of the steps takes O(m) time, for a total of O(mc). Also, a maximal spanning tree has the
property that for every non-empty cut, it contains at least one edge from it. Thus, for any cut ∂(S),
the c iterations add at least

min {c, |∂ (S)|}

edges to H, which means that up to a value of c, all cuts in G and H are the same.

A.2 Proof of Lemma 4.2

Let G′ = G/X be the contracted graph and vX be the contracted vertex in G′ that is obtained by
contracting G[X]. Since we do not contract the terminals, it suffices to show that, for any two
subsets XA, XB ⊆ T , we have mincutc

G′(XA, XB) = mincutc
G(XA, XB).

Starting with mincutc
G′(XA, XB) ≥ mincutc

G(XA, XB), we can see that all the edges in G′ are also in
G, which implies that any cutset in G′ is also in G. We conclude that the size of the minimum cut
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in G must be at most the size of the minimum cut in G′, for any pair of terminals sets. In general,
we can say that contraction of edges only ever increases connectivity, which implies the above.

Let us now show the converse, that is, mincutc
G′(XA, XB) ≤ mincutc

G(XA, XB). Since we are in the
unweighted setting, it is sufficient to consider |XA|, |XB| ≤ c. Suppose that mincutc

G′(XA, XB) =
ℓ ≤ c. Then there must be ℓ disjoint paths connecting X′A ⊆ XA to X′B ⊆ XB such that |X′A| =
|X′B| = ℓ. Denote the set of such paths in G′ by P ′.
We will construct the set of edge-disjoint paths P in G connecting X′A to X′B, thus implying that
mincutc

G(XA, XB) ≥ ℓ. We write P ′ as P ′ = P ′1 ∪P ′2 where P ′1 are the paths that do not go through
the contracted vertex vX. We add the paths in P ′1 to P , since they correspond to edge disjoint
paths in the original graph G. For paths in P ′2, we will need to specify their behavior inside the
contracted set G[X]. Let Ein ⊆ ∂(X) be the set of boundary edges of X that paths in P ′2 use to
enter vX; analogously, we define Eout ⊆ ∂(X). Notice that |Ein| = |Eout| = |P ′2| ≤ c. Since X
is connectivity-c well-linked, there is a collection of disjoint paths PX connecting Ein to Eout. We
stitch the three parts of the paths in P ′2 and PX together to add to P : (1) a subpath of some path
P ∈ P ′2 from a node in X′A to Ein, (2) a path in PX from that edge in Ein to an edge in Eout, and (3)
a subpath of some path Q ∈ P ′2 from the same an edge in Eout to a node in X′B. We remark that,
even though P contains ℓ edge-disjoint paths connecting X′A to X′B, the pairing induced by P and
P ′ may be different.

A.3 Proof of Theorem 1.1 Part 2

By Lemma 5.6, Algorithm 3 computes a set Econtain of edges that contains all (T , c)-cuts. Reduce to
m ≤ nc by Lemma 2.6. Let Cint be a constant such that part 2 of Theorem 5.7 gives us a set Eintersect

of edges intersecting all (T , c)-cuts of size at most Cint(φm log4 n + |T |)c2 in Õ(mφ−2c7) time. Let
Econtain

i be the set of edges Econtain after the iteration ĉ = i. Let T̂ be the terminals at the start of the
algorithm. We show by induction that before processing ĉ = i in the second line of Figure 3 that∣∣∣Econtain

i

∣∣∣ ≤ (4Cint)
c−i (c!)2

(i!)2

(
φm log4 n +

∣∣∣T̂ ∣∣∣)
and ∣∣∣V(Econtain

i )
∣∣∣ ≤ 2 (4Cint)

c−i (c!)2

(i!)2

(
φm log4 n +

∣∣∣T̂ ∣∣∣) .

Since |V(Ê)| ≤ 2|Ê| for any set of edges Ê, it suffices to bound |Econtain
i |. The induction hypothesis

holds for i = c. By Part 2 of Theorem 5.7 we have the size of Econtain after processing ĉ = i is at
most

Cint

(
φm log4 n + |V(Econtain

i )|
)

ĉ2 + |Econtain
i |

≤ Cint

(
φm log4 n + 2 (4Cint)

c−i (c!)2

(i!)2

(
φm log4 n +

∣∣∣T̂ ∣∣∣)) i2 + (4Cint)
c−i (c!)2

(i!)2

(
φm log4 n +

∣∣∣T̂ ∣∣∣)
≤ (4Cint)

c−i+1 (c!)2

(i− 1)!2
(

φm log4 n +
∣∣∣T̂ ∣∣∣)

as desired. Taking i = 0 shows that the final size of Econtain is at most (4Cint)
c(c!)2(φm log4 n+ |T̂ |).
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Then, we use the choice of conductance threshold

φ =
1

5c (4Cint)
c (c!)2 log4 n

.

Because m ≤ nc, the final size of Econtain is at most

(4Cint)
c c!
(

φm log4 n +
∣∣∣T̂ ∣∣∣) ≤ n

5
+ (4Cint)

c c!
∣∣∣T̂ ∣∣∣ .

Now, we apply Lemma 5.2 to produce a graph H with at most n
5 + (4Cint)

c(c!)2|T̂ | + 1 ver-
tices that is (T̂ , c)-equivalent to G. Now, we can repeat the process on H O(log n) times. The
number of vertices in the graphs we process decrease geometrically until they have at most
2(4Cint)

c(c!)2|T̂ | = O(c)2c|T̂ |many vertices.

Now, combining the runtime of Õ(mφ−2c7) along with our choice of φ above gives a vertex spar-
sifier with |T̂ | ·O(c)2c edges in time O(m · cO(c) · logO(1) n), as desired.

B Efficiently Finding a Violating Cut

Although our proof in Section 4 of existence of connectivity-c mimicking networks with O(kc4)
edges uses the concept of a violating cut, we do not explicitly find the violating cuts. In this
section, we present a parametrized algorithm running in time 2O(c2)k2m for finding violating cuts.

Let G = (V, E) be a graph and T ⊆ V a set of terminals, and let X = V \ T be the set of non-
terminal vertices in G. For simplicity, we will assume that our terminals are in one-to-one corre-
spondence with ∂(X) = EG(X, V(G)− X), that is, that all edges in ∂(X) have different endpoints
outside X. By abuse of notation, we write T = ∂(X) and k = |∂(X)|. Furthermore, this assump-
tion implies that all terminals have degree 1.

Observe first that a violating cut can be found in kO(c)Õ(m) time by simply computing all possi-
ble minimum cuts separating any disjoint subsets of terminals T0, T1 ⊆ T of size q ≤ c whose
minimum cut contains less than q edges. However, as we are aiming for a running time of
f (c)poly(k, m), we cannot afford to enumerate all the possible minimum cuts to find the “correct”
disjoint subsets T0, T1 ⊆ T .

Our algorithm actually solves a more general problem. We say that a cut (A0, A1) of G is a valid
(Q0, Q1, c0, c1, ℓ)-constrained cut if

• Q0 ⊆ A0 \ T and Q1 ⊆ A1 \ T .

• |Aj ∩ T | ≥ cj for j = 0, 1.

• EG(A0, A1) contains at most ℓ edges.

In other words, Q0 and Q1 are the non-terminals that are “constrained” to be on different sides.
The values of c0 and c1 are the minimum required number of terminals on the sides of A0 and A1
respectively. We will refer to the two sides of the cuts as zero side and one side, respectively.
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Observation B.1 Given a subroutine that finds a valid (Q0, Q1, c0, c1, ℓ)-constrained cut in time given
by some function T(m, k, max(c0, c1, ℓ)), there exists an algorithm that either returns a violating cut in G
or reports that such a cut does not exist in time O(cT(m, k, c)).

In the rest of the section, we shall describe an algorithm that finds a valid (Q0, Q1, c0, c1, ℓ)-
constrained cut. Let c = max(c0, c1, ℓ). Our algorithm has two steps, encapsulated in the following
two lemmas.

Lemma B.2 (Reduction) There is an algorithm that runs in time 2O(c2) · k2 · m, and reduces the prob-
lem of finding a valid (Q0, Q1, c0, c1, ℓ)-constrained cut to at most 2O(c2) instances of finding valid
(Q′0, Q′1, c′0, c′1, ℓ′)-constrained cut where min(c′0, c′1) = 0.

We remark that each of these instances may have different parameters (of the constrained cut).
The only property they have in common is that min(c′0, c′1) = 0; that is, there is only a one-sided
terminal requirement.

Lemma B.3 (Base case) For ℓ ≤ c, there is an algorithm that finds a valid (Q0, Q1, 0, c, ℓ)-constrained
cut (and analogously, (Q0, Q1, c, 0, ℓ)-constrained) in time 2O(c2) · k2 ·m.

The following theorem follows in a straightforward manner since every violating cut is also
(∅, ∅, ℓ+ 1, ℓ+ 1, ℓ)-constrained, for some ℓ ∈ [c− 1].

Theorem B.4 There is an algorithm that runs in time 2O(c2) · k2 ·m and either returns a violating cut or
reports that such a cut does not exist.

B.1 The reduction to the base case

In this subsection, we prove Lemma B.2. The main ingredient for doing so is the following lemma.

Lemma B.5 There is a reduction from (Q0, Q1, c0, c1, ℓ)-constrained cut to solving at most 2O(c) instances
of finding valid (Q′0, Q′1, c′0, c′1, ℓ′)-constrained cut where (c′0 + c′1) < (c0 + c1).

In other words, this lemma allows us to reduce the number of required terminals on at least one
of the sides by one. Applying Lemma B.5 recursively will allow us to turn an input instance of
(Q0, Q1, c0, c1, ℓ) constrained cut into at most 2O(c2) instances of the base problem: This follows
from the fact that at every recursive call, the value of at least one of c0 and c1 decreases by at least
one. Therefore, the depth of the recursion is at most 2c, and the “degree” of the recursion tree is at
most 2O(c) as guaranteed by the above lemma.

Let (G, T ) be an input. We now proceed to prove Lemma B.5, i.e., we show how to compute a
(Q0, Q1, c0, c1, ℓ)-constrained cut in (G, T ).

Our algorithm: Let (A′0, A′1) be a minimum cut in G such that Q0 ⊆ A′0 and Q1 ⊆ A′1 and
each side contains at least one terminal. This cut can be found by a standard minimum s-t cut
algorithm. Observe that the value of this cut is at most ℓ if there is a valid constrained cut.
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Such a cut can be used for our recursive approach to solve smaller subproblems by recursing on
G[A′i] as follows. Denote by Ti = A′i ∩ T for i = 0, 1. By definition, each set Ti is non-empty, and
this is crucial for us.

If |EG(A′0, A′1)| > ℓ, the procedure terminates and reports no valid solution. Or, if |Ti| ≥ ki for
all i = 0, 1, then we have found our desired constrained cut. Otherwise, assume that |T0| < k0
(the other case is symmetric). We create a collection of 2O(c) instances of smaller subproblems as
follows.

Sub-Instances.

• First, we guess the “correct” way to partition terminals in T0 into T0 = T 0
0 ∪ T 1

0 .
There are at most 2c possible guesses.

• Second, we guess the “correct” partition of the (non-terminal) boundary vertices
in V(EG(A′0, A′1))− T into B0 ∪ B1 where B0 and B1 are the vertices supposed to
be on the zero-side and one-side respectively. Let Ẽ = EG(B0, B1). There are 2c

possible guesses.

Now we will solve subproblems in G[A′0] and G[A′1]. Notice that G[A′0] has small number of
terminals, so we could solve it by brute force. For G[A′1], we will solve it recursively.

Let E0 be the minimum cut in G[A′0] that separates S0 = Q0 ∪ (B0 ∩ A′0)∪ T 0
0 and T0 = (B1 ∩ A′0)∪

T 1
0 . Next, we solve an instance of valid (Q′0, Q′1, c′0, c′1, ℓ′)-constrained cut in G[A′1] with terminal

set T1, where Q′0 = (B0 ∩ A′1), Q′1 = Q1 ∪ (B1 ∩ A′1), c′0 = max(c0− |T 0
0 |, 0), c′1 = max(c1− |T 1

0 |, 0),
and ℓ′ = ℓ − |Ẽ| − |E0|. Let E1 be a (Q′0, Q′1, c′0, c′1, ℓ′)-constrained cut. Our algorithm outputs
E0 ∪ E1 ∪ Ẽ.

Analysis. Clearly, c′0 + c′1 < c0 + c1. The following lemma will finish the proof.

Lemma B.6 There is a (Q0, Q1, c0, c1, ℓ)-constrained cut in (G, T ) if and only if there exist correct guesses
(B0, B1, T 0

0 , T 1
0 ) such that a (Q′0, Q′1, c′0, c′1, ℓ′)-constrained cut exists in (G[A′1], T1).

Proof: First, we prove the “if” part. Suppose that there exists such a guess (B0, B1, T 0
0 , T 1

0 ). We
claim that E0 ∪ E1 ∪ Ẽ is actually a (Q0, Q1, c0, c1, ℓ)-constrained cut that we are looking for. Ob-
serve that the size of the cut is at most ℓ.

We argue that there are two subsets of terminals T̃0 of size c0 and T̃1 of size c1 that are separated
after removing E0 ∪ E1 ∪ Ẽ. Let T 0

1 and T 1
1 be the sets of terminals in T1 that are on the side of Q′0

and Q′1, respectively (in particular, T 0
1 cannot reach Q′1 in G[A′1] after removing E1). Notice that

|T 0
0 ∪ T 0

1 | ≥ c0 and |T 1
0 ∪ T 1

1 | ≥ c1. The following claim completes the proof of the “if” part.

Claim B.7 Q0 ∪ T 0
0 ∪ T 0

1 and Q1 ∪ T 1
0 ∪ T 1

1 are not connected in G after removing Ẽ ∪ E0 ∪ E1.

Proof: Let us consider a path P from Q0 to Q1 in G; we view it such that the first vertex starts in
Q0 and so on until the last vertex on the path is in Q1. Let u be the last vertex the path from the
start lies completely in G[A′0] and v be the first vertex such that the path from v to the end lies
completely in G[A′1]. Break path P into P1P2P3 where P1 is the path from the first vertex to u, P2 is
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the path from u to v, and P3 the path from v to the last vertex of P in Q1. If |{u, v} ∩ B0| = 1, then
we are done because P2 contains some edge in Ẽ. So, it must be that (i) u, v ∈ B0 or (ii) u, v ∈ B1.
In case (i), we have v ∈ Q′0 while the last vertex of P is in Q1 ⊆ Q′1, so path P3 is path in G[A′1]
connecting Q′0 to Q′1. Hence, P3 contains an edge in E1. In case (ii), we have that u ∈ T0, while
the first vertex in P is in Q0 ⊆ S0. Therefore, path P1 is a path in G[A′0] connecting S0 to T0, which
must be cut by E0.

Similar analysis can be done when considering the path P that connects Q0 and T 1
1 , or between T 0

0
and Q1 ∪ T 1

1 . The only (somewhat) different case is when the path P connects Q0 to T 1
0 . Assume

that P is not completely contained in G[A′0] (otherwise, it would be trivial). Let u be the last vertex
on P such that the path from the start to u lies completely inside G[A′0], and let v be the first vertex
on P such that the path from v to the end of P lies completely inside G[A′0]. Again, we break P into
three subpaths P1P2P3 similarly to before. If u ∈ B1, then we are done because P1 would contain
an edge in E0; or, if v ∈ B0, then we are also done since P3 would contain an edge in E0. Therefore,
u ∈ B0 and v ∈ B1, implying that P2 must contain an edge in Ẽ.

To prove the “only if” part, assume that (A0, A1) is a valid (Q0, Q1, c0, c1, ℓ)-constrained cut. We
argue that there is a choice of guess such that the subproblem also finds a valid (Q′0, Q′1, c′0, c′1, ℓ′)-
constrained cut. We define Bi = V(EG(A0, A1)) ∩ Ai for i = 0, 1, and T i

0 = T0 ∩ Ai for i = 0, 1.
With these choices, we have determined the values of Q′0, Q′1, c′0 and c′1. The following claim will
finish the proof.

Claim B.8 There exists a cut E0 that separates S0 and T0 in G[A′0] and a cut E1 that is a (Q′0, Q′1, c′0, c′1, ℓ′)-
constrained cut.

Proof: First, we remark that |EG(A0, A1)| ≤ ℓ and

EG(A0, A1) = EG(B0, B1) ∪ EG(A′0 ∩ A0, A′0 ∩ A1) ∪ EG(A′1 ∩ A0, A′1 ∩ A1)

To complete the proof of the claim, it suffices to show that EG(A′0 ∩ A0, A′0 ∩ A1) is an (S0, T0) cut
in G[A′0] and that EG(A′1 ∩ A0, A′1 ∩ A1) is a valid constrained cut in G[A′1].

The first claim is simple: Since S0 ⊆ A0 and T0 ⊆ A1, any path from S0 to T0 in G[A′0] must contain
an edge in EG(A′0 ∩ A0, A′0 ∩ A1).

The second claim is also simple: (i) Q′0 ⊆ A0 and Q′1 ⊆ A1, so the edge set EG(A′1 ∩ A0, A′1 ∩
A1) separates Q′0 and Q′1, (ii) For i = 0, 1, the number of terminals on the Q′i-side must be at
least ci − |T i

0 | because otherwise this would contradict the fact that (A0, A1) is a (Q0, Q1, c0, c1, ℓ)-
constrained cut.

Lemma B.9 Let c = max{ℓ, c0, c1}. The algorithm to reduce the problem of finding a (Q0, Q1, c0, c1, ℓ)-
constrained cut with min c0, c1 > 0 to the problem of finding a (Q′0, Q′1, c′0, c′1, ℓ)-constrained cut with
min c1, c0 = 0 terminates in time 2O(c2) · k2 ·O(m).

Proof: Lemma B.5 implies that the depth of the recursion tree is at the most 2c and that each
recursive step reduces to solving 2O(c) sub-instances. Hence, the total number of nodes in the
recursion tree is 2O(c2).
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The total runtime outside the recursive calls is dominated by a minimum s− t-cut computation.
However, we observe that we are only interested in minimum cuts that are of value at the most
c. Hence, such a cut can be found in time O(mc) using any standard augmentation path based
algorithm. Also, recall that we are looking for cuts that have at least one terminal on each side and
hence we need to make k2 guesses. The total runtime for this procedure is k2 ·O(mc) and we have
the lemma.

B.2 Handling the base case

In this subsection, we prove Lemma B.3, i.e., we present an algorithm that finds a (Q0, Q1, c0, 0, ℓ)-
constrained cut (A′0, A′1). We first consider the case of c0 = 0: since neither side of the cut is
required to contain a terminal, we can simply compute a minimum-cut between Q0 and Q1. If one
of these is empty (say Q1), we take A′0 = V(G), A′1 = ∅. In any case, let E1 be the edges of the
cut. Now there are two possibilities: if |E1| ≤ ℓ, then our cut is a solution to the subproblem; if
|E1| > ℓ, then there is no cut separating Q0 from Q1 with at most ℓ edges, and therefore, there is
no valid constrained cut.

We can now focus on the case where c0 > 0. We can further assume that |T | ≥ c0; otherwise, there
is no feasible solution. For simplification, we also assume that Q0 is connected; if it is not, we
can add auxiliary edges to make it connected in the run of the algorithm, which we can remove
afterwards (these edges will never be cut since Q0 ⊆ A′0).

Important Cuts. The main tool we will be using is the notion of important cuts, introduced by
Marx [Mar06] (see [CFK+15] and references within for other results using this concept).

Definition B.10 (Important cut) Let G be a graph and X, Y ⊆ V(G) be disjoint subsets of vertices of G.

A cut (SX, SY), X ⊆ SX, Y ⊆ SY is an important cut if it has (inclusionwise) maximal reachability (from
X) among all cuts with at most as many edges. In other words, there is no cut (S′X, S′Y), X ⊆ S′X, Y ⊆ S′Y,
such that |E(S′X, S′Y)| ≤ |E(SX, SY)| and SX ⊊ S′X.

Proposition B.11 ([CFK+15]) Let G be an undirected graph and X, Y ⊆ V(G) two disjoint sets of ver-
tices.

Let (SX, SY) be an (X, Y)-cut. Then there is an important (X, Y)-cut (S′X, S′Y) (possibly SX = S′X) such
that SX ⊆ S′X and |E(S′X, S′Y)| ≤ |E(SX, SY)|.

Theorem B.12 ([CFK+15]) Let G be an undirected graph, X, Y ⊆ V(G) be two disjoint sets of vertices
and c ≥ 0 be an integer. There are at most 4c important (X, Y)-cuts of size at most c. Furthermore, the set
of all important (X, Y)-cuts of size at most c can be enumerated in time O(4c · c ·m).

Proposition B.13 Let G be an undirected graph and X, Y ⊆ V(G) two disjoint sets of vertices, and let
(SX, SY) be an important (X, Y)-cut.

Then (SX, SY) is also an important (X′, Y)-cut for all X′ ⊆ SX.

Proof: Assume that the statement is false for contradiction. Then there is an important cut (S′X, S′Y)
for (X′, Y), with |E(S′X, S′Y)| ≤ |E(SX, SY)| and SX ⊊ S′X by Proposition B.11. But then, X ⊆ SX ⊆
S′X, which means (S′X, S′Y) is an (X, Y)-cut, and therefore, (SX, SY) is not an important cut for
(X, Y), which is a contradiction.
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Cut profile vectors. In order to make the exposition of the algorithm clearer, we introduce the
concept of cut profile vectors.

Definition B.14 Let c, ℓ ≥ 0. A cut profile vector is a vector of λ ≤ c pairs of numbers {(κi, ℓi)}i∈[λ],
with κi ∈ [c− 1], ℓi ∈ [ℓ], satisfying

c ≤
λ

∑
i=1

κi ≤ 2c,
λ

∑
i=1

ℓi ≤ ℓ

Each of the pairs (κi, ℓi) is called a slot of this profile. We say a cut (A, B) is compatible with a slot (κi, ℓi)
if |A ∩ T | = κi and |E(A, B)| = ℓi

Observation B.15 There are at most cc · ℓc different cut profile vectors.

Given a cut (A, B), a cut profile vector represents the bounds for terminals covered and cut edges
for each of the components of G[A]: there are λ connected components, and component Ci con-
tains κi terminals and has ℓi cut edges. Our algorithm will enumerate all the possible cut profile
vectors and, for each of them, try to find a solution that fits the constraints given by the input. If
there is a solution to the problem, there must be a corresponding profile vector, and therefore the
algorithm finds a solution.

Algorithm Our algorithm works by guessing the number of connected components of G[A] as
well as the number of terminals that are contained in each component, and then proceeding to
find cuts that fit these guesses. This is made easier by the following two facts: 1. there is a solution
such that A is a disjoint union of important (Q0, Q1)-cuts or (t, Q1)-cuts, t ∈ T ; 2. we can find a set
of O(k2) terminals such that there is a solution where each connected component of G[A] contains
one of these terminals.

The strategy of the algorithm is as follows: it starts by guessing the component C0 that contains
Q0, out of all important (Q0, Q1)-cuts. If (C0, C̄0) is feasible, it returns. Otherwise, it guesses the
cut profile vector of the solution. Then it tries to greedily fill all of the slots using important cuts
containing disjoint sets of terminals. The goal of this stage is not yet to obtain a solution, but to
accumulate terminals for the second stage. This process of trying to fill each slot is repeated c
times so that we may have c candidates for each slot. All of the terminals contained in each of
the candidates found this way form our base set of terminals, denoted S. The solution is finally
obtained by enumerating tuples of up to c components out of important (t, Q1)-cuts, for t ∈ S.

We refer to Figure B.2 for a formal description of the algorithm.

We will now show that if there is a solution to the problem, our algorithm always finds a solution.
This implies that, when we output “No Valid Solution”, there is no solution. From now on, we
assume that there is a solution to the problem. Let (A, B) be a solution that minimizes the number
of connected components of G[A].

Let C0 be the set of all important cuts (C, C̄) for (Q0, Q1), and let C be the set of all important cuts
(C, C̄) for (t, Q1), for any t ∈ T .

Lemma B.16 There is a solution (A′, B′) such that every connected component C of G[A′] corresponds
to an important cut (C, C̄) in C0 or C. Furthermore, the number of connected components of G[A′] is not
greater than that of G[A].
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Proof: We will show an iterative process that turns a solution (A, B) into a solution (A′, B) where
every component corresponds to an important cut as above.

Let C be a component of G[A] that does not correspond to an important cut in C0 or C. Notice
that C cannot contain a proper non-empty subset of Q0 since Q0 ⊆ A and we assume that Q0
is connected. If C does not contain any terminals or Q0, we move C to B (resulting in the cut
(A \ C, B ∪ C)). Since C is a connected component of G[A], all of the neighbors of C are in B, and
therefore moving C to B does not add any cut edges.

In the remaining case, C contains a terminal t ∈ T or Q0 but is not an important cut. By Proposition
B.11, there is an important cut (C′, C̄′) with at most as many cut edges as (C, C̄) and C ⊊ C′. We
can replace C by a component corresponding to an important cut by taking the cut (A∪C′, B \C′).
This is still a valid solution since all terminals contained in A are contained in A ∪ C′, and Q0 ⊆
A, Q1 ⊆ B \ C′. Additionally, the number of edges crossing the cut does not increase: since
|E(C′, C̄′)| ≤ |E(C, C̄)|, the number of edges added to the cutset is at most the number of edges
removed.

We can apply the operations above until the constraints in the lemma are satisfied. Notice that
when applying the operations above, the number of components of G[A] never increases and
the number of vertices in A connected to terminals in G[A] never decreases. Furthermore, each
operation changes at least one of the two quantities above, so this process must finish after a finite
number of operations.

Lemma B.17 If a feasible cut (A, B) exists, then our algorithm returns a feasible solution.

Proof: Due to Lemma B.16, we can assume that every connected component of G[A] corresponds
to an important cut. Now, let C∗0 , C∗1 , . . . , C∗λ be the connected components of G[A], with C∗0 ∈ C0
being the component that contains Q0. Let {(κi, ℓi)}λ be the cut profile vector corresponding to
the cuts (C∗i , C̄∗i ) for i ∈ {1, . . . , λ} (excluding C∗0 ), meaning that κi, ℓi are the number of terminals
in C∗i and the number of edges in the cutset, E(C∗i , C̄∗i ), respectively. Notice that, if C∗0 or C∗0 ∪ C∗i
(for some i ∈ [λ]) contain at least c terminals, then we can remove all the other components of A.
In this case, the algorithm finds C0 ∈ C0 or C0 ∈ C0, C1 ∈ C by enumeration and returns a valid
solution. Otherwise, all the components contain at most c− 1 terminals each (and thus A induces
a slot vector as in Definition B.14).

Consider the iteration of the algorithm in which the cut profile vector defined above is considered
and C0 = C∗0 . The next part of the algorithm (Lines 22–29) greedily fills the slots with compatible
important cuts from C, while making sure that each set contains a disjoint set of terminals from
the others. Though it seems that our goal at this stage is to obtain a feasible solution, what we
intend is to obtain a set of terminals, denoted S, such that the set of important cuts for terminals in
S contains a feasible solution. For instance, if S contains at least one terminal from each C∗i , i ∈ [λ],
our goal is achieved.

The above considerations motivate the following definition. We say a slot i is hit by S if S∩C∗i ̸= ∅.
Notice that slot i is hit by S if Cji = C∗i for some j, since the terminals in C∗i is added to S. Slot i is
also hit by S if, for some j, we cannot find a set Cji, since that implies that Cji = C∗i is not a valid
choice, and thus S ∩ C∗i ̸= ∅. Furthermore, if slot i is not hit by S, then Cji is found in all (c + 1)
rounds.
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Let CS ⊆ C be the subset of important cuts containing terminals in S (by Proposition B.13 these
are the important (t, Q1)-cuts for t ∈ S). It is now suficient to show that there is a sequence of λ
cuts

{
(Ci, C̄i)

}
i∈λ

from CS, such that all Ci contain disjoint sets of terminals (also disjoint with the
terminals in C0), and such that (Ci, C̄i) is compatible with (κi, ℓi). Taking C = C0 ∪

⋃λ
i=1 Ci, we

obtain a feasible solution (C, C̄), which may be different from (A, B), but has the same number of
connected components as G[A], and the same numbers of terminals contained in each component
and cut edges separating each component from the other side of the cut. Since the algorithm
enumerates all such sequences of λ sets, it will find either (C, C̄) or a different feasible solution.

We now define the sets Ci: if a slot i is hit by S we can set Ci = C∗i , since there is t ∈ C∗i ∩ S,
and therefore, (C∗i , C̄∗i ) ∈ CS. This cut is trivially compatible with (κi, ℓi), and is disjoint to all
other sets defined similarly. Let IH be the set of all i ∈ [λ] such that slot i is hit by S, and let
C∗ =

⋃
{Ci : i ∈ IH}. All that is left to prove is that, for every slot i that is not hit by S, there is

an important cut (Ci, C̄i) ∈ CS, which contains terminals not in any previous Ci′ , i′ ≤ i, or in C∗.
Notice that we have covered at most c terminals so far (if we covered more, then the components
so far are sufficient and therefore the number of components of G[A] is not minimal). Since there
are c + 1 important cuts (Cji, C̄ji), j ∈ [c + 1], all compatible with slot i and containing disjoint sets
of terminals (since the terminals of Cji are added to S after being picked), there must be one set Cji
that does not contain any of the at most c terminals in

⋃
i′<i Ci′ , or in C∗, and we can set Ci = Cji.

Therefore, a sequence
{
(Ci, C̄i)

}
i∈λ

exists, and the algorithm outputs a feasible solution.

Finally, we analyze the running time.

Lemma B.18 The described algorithms terminates in time 2O(c2) · k + 2O(c) · k ·m.

Proof: Computing all the relevant important cuts takes time 2O(c) · k · m. There are at most cO(c)

cut profile vectors, and for each of these the algorithm fills the slots at most c times, which takes
time c2 · k · 2O(c); then, once it has computed S, it enumerates at most c components out of 2O(c) · c2

possible important cuts, which takes time
(
2O(c) · c2)c

= 2O(c2). Once the right combination of
components is found, it takes O(n) time to obtain the corresponding feasible cut. The total running
time is

2O(c) · k ·m + cO(c)(c2 · k · 2O(c) + 2O(c2)
)
= 2O(c2) · k + 2O(c) · k ·m
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1: function Constrained-Cut(G, T , Q0, Q1,c, ℓ)
2: if c = 0 then
3: Compute a min-cut (A′0, A′1) such that Q0 ⊆ A′0, Q1 ⊆ A′1
4: if |E(A′0, A′1)| ≤ ℓ then
5: return (A′0, A′1)
6: else
7: return NO VALID SOLUTION
8: end if
9: end if

10: Compute the set C0 of all important (Q0, Q1)-cuts with at most ℓ cut edges
11: Compute the set C of all important (t, Q1)-cuts for t ∈ T with at most ℓ cut edges

12: Find an important cut (C0, C̄0) ∈ C0 such that |C0 ∩ T | ≥ c
13: if (C0, C̄0) exists then
14: return (C0, C̄0)
15: end if
16: Find important cuts (C0, C̄0) ∈ C0, (C1, C̄1) ∈ C, such that (C0 ∩ T ) ∩ (C1 ∩ T ) = ∅,

|C0 ∩ T |+ |C1 ∩ T | ≥ c, and
∣∣E(C0 ∪ C1, C̄0 ∩ C̄1)

∣∣ ≤ ℓ
17: if (C0, C̄0), (C1, C̄1) exist then
18: return (C0 ∪ C1, C̄0 ∩ C̄1)
19: end if

20: for all cut profile vectors {(κi, ℓi)}λ, and all (C0, C̄0) ∈ C0 do
21: S← C0 ∩ T
22: for j ∈ {1, . . . , c + 1} do // Round j
23: for i ∈ {1, . . . , λ} do
24: Find (Cji, C̄ji) ∈ C compatible with slot (κi, ℓi), such that Cji ∩ S = ∅
25: if Cji exists then
26: S← S ∪ (Cji ∩ T )
27: end if
28: end for
29: end for

30: Let CS =
{
(C, C̄) | C ∩ S ̸= ∅

}
31: Find (by enumeration)

{
(Ci, C̄i)

}
i∈λ

, with (Ci, C̄i) ∈ CS compatible with slot i,
and all sets Ci ∩ T are disjoint (including C0 ∩ T )

32: if
{
(Ci, C̄i)

}
i∈λ

exists then
33: Let C = C0 ∪

⋃λ
i=1 Ci

34: return (C, C̄)
35: end if
36: end for

37: return NO VALID SOLUTION // No solution found for any cut profile
38: end function

Figure 7: Algorithm to find a constrained cut in the base case
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