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The fundamental Sparsest Cut problem takes as input a graph 𝐺 together with edge capacities and demands,

and seeks a cut that minimizes the ratio between the capacities and demands across the cuts. For 𝑛-vertex

graphs 𝐺 of treewidth 𝑘 , Chlamtáč, Krauthgamer, and Raghavendra (APPROX 2010) presented an algorithm

that yields a factor-2
2
𝑘
approximation in time 2

𝑂 (𝑘 ) · 𝑛𝑂 (1)
. Later, Gupta, Talwar and Witmer (STOC 2013)

showed how to obtain a 2-approximation algorithm with a blown-up run time of 𝑛𝑂 (𝑘 )
. An intriguing open

question is whether one can simultaneously achieve the best out of the aforementioned results, that is, a

factor-2 approximation in time 2
𝑂 (𝑘 ) · 𝑛𝑂 (1)

.

In this paper, we make significant progress towards this goal, via the following results:

(i) A factor-𝑂 (𝑘2) approximation that runs in time 2
𝑂 (𝑘 ) ·𝑛𝑂 (1)

, directly improving the work of Chlamtáč

et al. while keeping the run time single-exponential in 𝑘 .

(ii) For any 𝜀 ∈ (0, 1], a factor-𝑂 (1/𝜀2) approximation whose run time is 2
𝑂 (𝑘1+𝜀/𝜀 ) · 𝑛𝑂 (1)

, implying a

constant-factor approximation whose run time is nearly single-exponential in 𝑘 and a factor-𝑂 (log2 𝑘)
approximation in time 𝑘𝑂 (𝑘 ) · 𝑛𝑂 (1)

.

Key to these results is a new measure of a tree decomposition that we call combinatorial diameter, which may

be of independent interest.
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1 INTRODUCTION
In the Sparsest Cut problem, we are given a graph together with capacities and demands on the

edges, and our goal is to find a cut that minimizes the ratio between the capacities and demands

across the cut. Formally, we define it as follows:

Problem Definition. In the Sparsest-Cut problem (with general demands), the input is a graph

𝐺 = (𝑉 , 𝐸𝐺 ) with positive edge capacities

{
cap𝑒

}
𝑒∈𝐸𝐺 and a demand graph 𝐷 = (𝑉 , 𝐸𝐷 ) (on the

same set of vertices) with positive demand values {dem𝑒 }𝑒∈𝐸𝐷 . The aim is to compute the values

Φ𝐺,𝐷 := min

𝑆⊆𝑉
Φ𝐺,𝐷 (𝑆), Φ𝐺,𝐷 (𝑆) :=

∑
𝑒∈𝐸𝐺 (𝑆,𝑉 −𝑆 ) cap𝑒∑
𝑒∈𝐸𝐷 (𝑆,𝑉 −𝑆 ) dem𝑒

.
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To avoid division by zero, we only consider cuts 𝑆 for which

∑
𝑒∈𝐸𝐷 (𝑆,𝑉 −𝑆 ) dem𝑒 is non-zero. The

value Φ𝐺,𝐷 (𝑆) is called the sparsity of the cut 𝑆 .

Sparsest-Cut is among the most fundamental optimization problems that has attracted the

attention of both computer scientists and mathematicians. As the problem is NP-hard [26], the

focus has been to study approximation algorithms for the problem. Over the past four decades,

several breakthrough results have eventually culminated in a factor-�̃� (
√︁
log𝑛) approximation in

polynomial time [1, 2, 24]. On the lower-bound side, the problem is APX-hard [12] and, assuming

the Unique Games Conjecture, does not admit any constant-factor approximation in polynomial

time [8].

The significance of the Sparsest-Cut problem stems from both applications and mathematical

reasons. From the point of view of applications, the question of partitioning the universe into two

parts while minimizing the “loss” across the interface is crucial in any divide-and-conquer approach

e.g., in image segmentation. From a mathematical/geometric viewpoint, the integrality gap of

convex relaxations for sparsest cuts is equivalent to the embeddability of any finite metric space

(for LP relaxation) and of any negative-type metric (for SDP relaxation)
1
into ℓ1. Therefore, it is not

a surprise that this problem has attracted interest from both computer science and mathematics

(geometry, combinatorics, and functional analysis) communities.

In 2010, Chlamtáč, Krauthgamer, and Raghavendra [10] initiated the study of sparsest cuts in

the low-treewidth regime, which restricts the treewidth of the capacitated subgraph 𝐺 to some

integer 𝑘 (no restrictions are placed on the demand graph 𝐷). Chlamtáč et al. devised a factor-

2
2
𝑘

approximation algorithm (CKR) that runs in time 2
𝑂 (𝑘 ) · 𝑛𝑂 (1)

, with 𝑘 being the treewidth

of the capacitated subgraph 𝐺 . Later, Gupta, Talwar and Witmer [18] showed how to obtain a

factor-2 approximation (GTW) with a blown-up run time of 𝑛𝑂 (𝑘 )
; they further showed that there

is no (2 − 𝜀)-approximation for any 𝜀 > 0 on constant-treewidth graphs, assuming the Unique

Games Conjecture. Cohen-Addad, Mömke, and Verdugo [15] recently gave a factor-2 approximation

algorithm (CMV) with run time 2
2
𝑂 (𝑘 ) · 𝑛𝑂 (1)

, which removes the dependency on 𝑘 in the exponent

of 𝑛, but suffers from a doubly-exponential dependence on 𝑘 .

It remains an intriguing open question whether one can simultaneously achieve the best run

time and approximation factor. In particular, in this paper we address the following question:

Does Sparsest-Cut admit a factor-2 approximation algorithmwith run time 2
𝑂 (𝑘 ) ·𝑛𝑂 (1)

?

Broader perspectives. Given the relevance of sparsest cuts, significant effort has been invested

into understanding when Sparsest-Cut instances are “easy”. In trees, optimal sparsest cuts can be

found in polynomial time (see e.g., Gupta et al. [22]). For many other well-known graph classes,

finding optimal sparsest cuts is NP-hard, and thus researchers attempted to find constant-factor

approximation algorithms in polynomial time. They have succeeded, over the past two decades,

for several classes of graphs, such as outerplanar, ℓ-outerplanar, bounded-pathwidth and bounded-

treewidth graphs [9, 10, 17, 18, 23], as well as planar graphs [13].

As mentioned earlier, sparsest cuts are not only interesting from the perspective of algorithm

design, but also from the perspectives of geometry, probability theory and convex optimization.

Indeed, the famous conjecture of Gupta, Newman, Rabinovich, and Sinclair [17] postulates that

any minor-free graph metric embeds into ℓ1 with constant distortion, which would imply that all

such graphs admit a constant approximation for the Sparsest-Cut problem. The conjecture has

been verified in various graph classes [9, 23], but remains open even for bounded-treewidth graph

families.

1
A metric (𝑋,𝑑 ) is said to be negative type, if (𝑋,

√
𝑑 ) embeds isometrically into a Hilbert space.
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To us, perhaps the most interesting aspect of the treewidth parameter [10, 18] is its connection

to the power of hierarchies of increasingly tight convex relaxations of combinatorial optimizat-

tion problems (see, for instance, the work by Laurent [21]). In the bounded-treewidth setting, a

(problem-independent!) LP rounding algorithm performs surprisingly well for many combina-

torial optimization problems: not only does it achieve optimal solutions for various fundamen-

tal problems [3, 25, 28], but it has also led to tight approximation factors for problems such as

Group Steiner Tree [6, 7, 16, 19]. In this way, for these aforementioned problems, such a problem-

oblivious LP rounding algorithm provides a natural framework to generalize an optimal algorithm

on trees to nearly-optimal ones on low (perhaps super-constant) treewidth graphs. Our work can

be seen as trying to develop such understanding in the context of Sparsest-Cut.

1.1 Our Results
We present several results that may be seen as an intermediate step towards the optimal result.

Our main technical results are summarized in the following theorem.

Theorem 1.1. For the following functions 𝑡 and 𝛼 , there are algorithms that run in time 𝑡 (𝑘) ·𝑛𝑂 (1)

and achieve approximation factors 𝛼 (𝑘) for the Sparsest-Cut problem on graphs of treewidth 𝑘 :

• 𝑡 (𝑘) = 2
𝑂 (𝑘 )

and 𝛼 (𝑘) = 𝑂 (𝑘2).
• 𝑡 (𝑘) = 2

𝑂 (𝑘2 )
and 𝛼 (𝑘) = 𝑂 (1).

• For any 𝜀 ∈ (0, 1], 𝑡 (𝑘) = exp

(
𝑂
(
𝑘1+𝜀

𝜀

) )
and 𝛼 (𝑘) = 𝑂 (1/𝜀2).

For the proof, we refer to Sections 4.1 to 4.3 for each of the respective constructions.

Our first result directly improves the approximation factor of 2
2
𝑘

by Chlamtáč et al., while

keeping the run time single-exponential in 𝑘 . Our second result shows that, with only slightly

larger run time, one can achieve a constant approximation factor. Compared to Gupta et al., our

result has a constant blowup in the approximation factor (independent of 𝑘), but has a much

better run time (2
𝑂 (𝑘2 )

instead of 𝑛𝑂 (𝑘 )
); compared to Chlamtáč et al., our result has a much better

approximation factor (𝑂 (1) instead of 22𝑘 ), while maintaining nearly the same asymptotic run time.

Finally, our third result gives us a range of different results trading off the size of the approximation

factor against the run time of the algorithm. We remark that, by plugging in 𝜀 = Ω(1/log𝑘), we
obtain a factor-𝑂 (log2 𝑘) approximation in time 𝑘𝑂 (𝑘 ) · 𝑛𝑂 (1)

.

1.2 Overview of Techniques
In this section, we sketch the main ideas used in deriving our results. We assume certain familiarity

with the notions of treewidth and tree decomposition, however for completeness the formal

definition of tree decompositions is restated in Section 2. Let (T ,B) be a tree decomposition of

a graph 𝐺 , with B being a collection of bags 𝐵𝑡 ⊆ 𝑉 (𝐺) for all 𝑡 ∈ 𝑉 (T ). The width of (T ,B)
is 𝑤 (T ,B) = max𝑖∈𝑉 (T) |𝐵𝑖 | − 1, and the treewidth of 𝐺 is the minimum width over all tree

decompositions of 𝐺 .

The run times of algorithms that deal with the treewidth parameter generally depend on𝑤 (T ,B),
so when designing an algorithm in low-treewidth graphs𝐺 one usually starts with a near-optimal

tree decomposition (T ,B), satisfying 𝑤 (T ,B) = 𝑂 (𝑘), where 𝑘 is the treewidth of 𝐺 . As an

example, the CKR algorithm [11]
2
for Sparsest-Cut runs in time 2

𝑂 (𝑤 (T,B) ) · 𝑛𝑂 (1)
and gives

approximation factor 2
2
𝑤 (T)

. In this setting, it is always desirable to use a tree decomposition of

lowest possible width, even though an increase in the width would still allow us to obtain the

2
In the remainder of the paper, we cite the arXiv version of the paper by Chlamtáč et al. [10], as we need some results that

are only present in that version.
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0:4 Chalermsook et al.

desired run time of 2
𝑂 (𝑘 ) · 𝑛𝑂 (1)

. In particular, with width 𝑤 (T ,B) = 𝑂 (log𝑛) + 𝛽 (𝑘) the CKR
algorithm runs in time 2

𝑂 (𝛽 (𝑘 ) ) · 𝑛𝑂 (1)
, but it achieves a poor approximation ratio.

We aim to exploit this flexibility in the run time component by devising a refined analysis of

the CKR algorithm so that its approximation factor depends on the diameter 𝑑 of T . We can then

increase the width of a given decomposition while decreasing its diameter to obtain trade-offs

between the runtime and approximation factor. In hindsight, this analysis is already present in

the original work of Chlamtáč et al. and gives an approximation factor of 𝑂 (𝑑2), although it is not

useful when used naïvely, since 𝑑 will be Ω(log𝑛). However, we can use it by modifying the tree

decomposition to obtain a trade-off between runtime and approximation guarantee.

For a simplified example of how to obtain such a trade-off, consider a path decomposition (P,B).
If we combine pairs of bags along the path we will obtain a new path decomposition whose width is

twice that of (P,B), but its diameter has been halved. Taking this further, ifP had diameter𝑂 (log𝑛)
we could combine subpaths of log𝑛/𝑤 (P,B) many bags to obtain a modified decomposition of

width log𝑛 +𝑤 (P,B) and diameter 𝑂 (𝑤 (P,B)).
Let us now go from this simple example to the general setting, where instead of path decomposi-

tions we deal with tree decompositions. Initially, we obtain a tree decomposition (T ,B) of 𝐺 of

width 𝑂 (𝑘) and diameter 𝑂 (log𝑛) by running an algorithm by Korhonen [20] and subsequently

applying an algorithm of Bodlander [4], in time 2
𝑂 (𝑘 ) ·𝑂 (𝑛). Combining such a tree decomposi-

tion with the aforementioned bag composition argument would already be sufficient to greatly

improve the approximation factor of Chlamtáč et al., if it could be extended to tree rather than

path decompositions. While it is possible to reduce the analysis of the CKR algorithm to the case

of path decompositions, one cannot simply combine sets of neighbouring bags in the case of tree

decompositions: since nodes may have many neighbours, this would cause too large an increase in

the width.

To overcome this impediment, we introduce the concept of “combinatorial diameter” of a tree

decomposition. Informally, the combinatorial length of a path between 𝑢 and 𝑣 in T measures

the number of “non-redundant bags” that lie on the unique path in T connecting the bags of 𝑢

and 𝑣 . We say that the combinatorial diameter Δ(T ,B) of (T ,B) is the maximum combinatorial

length of any path in T . We refer to Section 3.1 for formal definitions. The notion of combinatorial

diameter allows us to argue that, by purposefully modifying a tree decomposition, many of the

nodes do not impact the approximation factor (i.e. are redundant) since their bags contain vertices

that occur only briefly during rounding, and thus are in some sense unable to carry information

forward that could degrade performance. Formally, Theorem 3.6 shows that the approximation

factor of the CKR algorithm can be upper bounded, in terms of the combinatorial diameter, by

min{𝑂 (Δ(T ,B)2), 22𝑤 (T,B) }. Moreover, in the special case of Δ(T ,B) = 1, the CKR algorithm gives

a 2-approximation, which follows from the arguments of Gupta et al. [18].

With this result at hand it then suffices to construct a tree decomposition (T ,B) with simul-

taneously low𝑤 (T ,B) and low Δ(T ,B) to obtain a good approximation algorithm, i.e. one that

achieves a 𝑂 (Δ(T ,B)2)-approximation in time 2
𝑤 (T,B) · 𝑛𝑂 (1)

. Constructing such tree decompo-

sitions is possible using a generalised version of the width/diameter trade-off sketched for path

decompositions, now exploiting the fact that we only need to decrease the combinatorial diameter,

while the actual diameter may stay large.

This framework is surprisingly powerful, and allows us to construct a range of different tree

decompositions exhibiting different widths and combinatorial diameters, which we summarise

in Table 1. Furthermore, we can also interpret the existing results by CKR [11], GTW [18], and

CMV [14] in our framework as giving constructions of tree decompositions with different trade-offs

between width and combinatorial diameter. Under this lens, the existing work on approximation

ACM Trans. Algor., Vol. 0, No. 0, Article 0. Publication date: January 2024.
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Lemma 4.3 Lemma 4.5 Lemma 4.7 ∀𝑞 ∈ N1 GTW [18] CMV [14]

Δ(T ,B) 𝑂 (𝑘) 3 2𝑞 + 1 1 1

𝑤 (T ,B) 𝑂 (log𝑛 + 𝑘) 𝑂 (log𝑛 + 𝑘2) 𝑂 (log𝑛 + 𝑞𝑘1+1/𝑞) 𝑂 (𝑘 log𝑛) 𝑂 (log𝑛) + 2
𝑂 (𝑘 )

Table 1. A summary of achievable trade-offs between width and combinatorial diameter of a tree decom-
position for a graph with 𝑛 vertices and treewidth 𝑘 . All of these constructions give rise to 𝑂 (Δ(T ,B)2)-
approximation algorithms running in time 2𝑤 (T,B) · 𝑛𝑂 (1) . For Δ(T ,B) = 1 the approximation factor can be
shown to be 2, by the arguments in GTW [18].

algorithms for the Sparsest-Cut problem in the bounded-treewidth regime can then be understood

as being applications of the CKR algorithm to tree decompositions with the correct compromise

between width and combinatorial diameter.

2 PRELIMINARIES
We use N1 to denote the positive integers {1, 2, . . . } and N0 to mean N1 ∪ {0}.

Tree decompositions. Let𝐺 be a graph. A tree decomposition (T ,B) of𝐺 is a tree T together with

a collection B = {𝐵𝑖 }𝑖∈𝑉 (T) of bags, where the bags 𝐵𝑖 ⊆ 𝑉 (𝐺) satisfy the following properties:

• 𝑉 (𝐺) = ⋃
𝑖∈𝑉 (T) 𝐵𝑖 .

• For each edge 𝑢𝑣 ∈ 𝐸 (𝐺), there is a bag 𝐵𝑖 containing both 𝑢 and 𝑣 .

• For each vertex 𝑣 ∈ 𝑉 (𝐺), the collection of bags containing 𝑣 induces a subtree of T .

The width of (T ,B) is given by 𝑤 (T ,B) = max𝑖∈𝑉 (T) |𝐵𝑖 | − 1, and the treewidth of 𝐺 is the

minimum width of any tree decomposition of 𝐺 .

Korhonen [20] shows how to compute a tree decomposition of a treewidth-𝑘 graph that has

width 2𝑘 in time 2
𝑂 (𝑘 ) · 𝑛, and a procedure due to Bodlaender [4] allows us to transform any such

decomposition into one that has diameter 𝑂 (log𝑛) and width at most 6𝑘 + 2.

We will also assume that the number of nodes in the tree T is bounded by𝑂 (𝑛), by the following
simple process: repeatedly delete any bag that has at most one child and is a subset of its parent;

after this process ends, there are at most 𝑛 bags with at most one child (since each must introduce

a new vertex), and thus at most 2𝑛 nodes in total.

We generally use 𝑟 to denote the root of T , and 𝑝 : 𝑉 (T ) → 𝑉 (T ) for the parent of a node with
respect to root 𝑟 , where 𝑝 (𝑟 ) = 𝑟 . We sometimes refer to 𝐵𝑝 (𝑖 ) as the parent bag of 𝐵𝑖 . Let T𝑖↔𝑗 be

the set of nodes on the unique path in tree T between nodes 𝑖, 𝑗 ∈ 𝑉 (T ) (possibly 𝑖 = 𝑗 ). For a set

𝑋 ⊆ 𝑉 (T ) of nodes, we use the shorthand 𝐵(𝑋 ) = ⋃
𝑖∈𝑋 𝐵𝑖 (the union of bags for nodes in 𝑋 ).

We will treat cuts in a graph as assignments of {0, 1} to each vertex, which we formally denote

as 𝑋 -assignments:

Definition 2.1. Let 𝑋 be some finite set. An 𝑋 -assignment is a map 𝑓 : 𝑋 → {0, 1}. We denote

by F [𝑋 ] the set of all𝑋 -assignments. For some probability distribution 𝜇 over F [𝑋 ] and set 𝑌 ⊆ 𝑋

we define 𝜇 |𝑌 to be the distribution given by

Pr

𝑓 ∼𝜇 |𝑌
[𝑓 = 𝑓 ′] = Pr

𝑓 ∼𝜇
[𝑓 |𝑌 = 𝑓 ′] ∀𝑓 ′ ∈ F [𝑌 ] .

3 ALGORITHM AND COMBINATORIAL DIAMETER
Our approach is based on the new relation between the algorithm of Chlamtáč et al. [11] and our

novel notion of “combinatorial diameter”. In Section 3.1, we present the definition of combinatorial

ACM Trans. Algor., Vol. 0, No. 0, Article 0. Publication date: January 2024.
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Fig. 1. Illustration of the bags of a redundant node 𝑣 and its neighbors. Notice that the vertices in 𝐵𝑣 are
either in 𝐵𝑢 , in which case they are already processed at 𝑢, or they are neither in 𝐵𝑢 nor in 𝐵𝑤 , in which case
they have no impact on the rounding algorithm along this path.

diameter. The subsequent sections give the description of Chlamtáč et al. and prove its connection

to the combinatorial diameter.

3.1 Our New Concept: Combinatorial Diameter
Let 𝐺 be a graph and let (T ,B) be a tree decomposition of 𝐺 , where B = {𝐵𝑖 }𝑖∈𝑉 (T) .

Definition 3.1 (Redundant bags). Fix 𝑠, 𝑡 ∈ 𝑉 (T ). Let 𝑣 ∈ 𝑉 (T ) \ {𝑠, 𝑡} be a node with neighbors 𝑢

and𝑤 on the path T𝑠↔𝑡 . When 𝐵𝑣 ∩ 𝐵𝑤 ⊆ 𝐵𝑢 , we say that 𝑣 is (𝑠, 𝑡)-redundant.

Intuitively, each redundant node 𝑣 can be thought of as a subset of 𝑢, since the vertices in

𝐵𝑣 \ 𝐵𝑢 occur only in 𝐵𝑣 within T𝑠↔𝑡 . As a consequence, we can show that they do not affect

the rounding behaviour of the CKR algorithm with respect to 𝑠 and 𝑡 (therefore “redundant”). It

might be surprising that redundancy depends on the direction of the traversal, i.e. a node might

be (𝑠, 𝑡)-redundant but not (𝑡, 𝑠)-redundant. We will be able to circumvent this by observing that

the CKR algorithm is not impacted by the choice of direction, so the definition will effectively be

symmetric in the sense that if a node is redundant in one of the directions, we may assume that the

algorithm is using this direction.

Definition 3.2 (Simplification). Let (T ,B) be a tree decomposition, and let 𝑠, 𝑡 ∈ 𝑉 (T ). A simpli-

fication of T𝑠↔𝑡 is a path 𝑃 which can be generated from T𝑠↔𝑡 by repeatedly applying the following

rule:

Delete an (𝑠, 𝑡)-redundant node 𝑣 with neighbors𝑢,𝑤 on the pathT𝑠↔𝑡 , and add the edge {𝑢,𝑤}.
We call this operation bypassing 𝑣 .

Definition 3.3 (Combinatorial diameter). Let (T ,B) be a tree decomposition, and let 𝑠, 𝑡 ∈ 𝑉 (T ).
We say T𝑠↔𝑡 has combinatorial length at most ℓ if it has a simplification of length at most ℓ . The

combinatorial diameter of (T ,B) is defined as the minimum 𝛿 such that, for all 𝑢, 𝑣 , the path T𝑢↔𝑣

has combinatorial length at most 𝛿 .
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Algorithm 1: Algorithm SC-Round

Data: 𝐺, (T , {𝐵𝑖 }𝑖∈𝑉 (T) ), {𝜇𝐿}
1 Start at any bag 𝐵0, sample 𝑓 |𝐵0

from 𝜇𝐵0
;

2 We process the bags in non-decreasing order of distance from 𝐵0 ;

3 foreach bag 𝐵 with a processed parent bag 𝐵′ do
4 Let 𝐵+ = 𝐵 ∩ 𝐵′

the subset of 𝐵 on which 𝑓 is fixed. Let 𝐵−
:= 𝐵 \ 𝐵+

. Sample 𝑓 |𝐵−

according to

Pr[𝑓 |𝐵− = 𝑓 ′] = Pr

𝑓 ∗∼𝜇𝐵
[𝑓 ∗ |𝐵− = 𝑓 ′ | 𝑓 ∗ |𝐵+ = 𝑓 |𝐵+ ] ∀𝑓 ′ ∈ F [𝐵−]

5 end
Result: 𝑓

3.2 Algorithm Description and Overview
For completeness, we restate the essential aspects of the algorithm by Chlamtáč et al. [11]. The

algorithm is initially provided a Sparsest-Cut instance (𝐺, 𝐷, cap, dem) alongside a tree decompo-

sition (T ,B) of 𝐺 . The goal is then to compute a cut in 𝐺 that has low sparsity.

The algorithm starts by computing, for every vertex set 𝐿 = 𝐵𝑖 ∪ {𝑠, 𝑡} consisting of a bag 𝐵𝑖 and
a pair of vertices 𝑠, 𝑡 ∈ 𝑉 (𝐺), a distribution 𝜇𝐿 over 𝐿-assignments. The collection of distributions

for all sets 𝐿 satisfies consistency constraints, that is, any two distributions must agree on their

joint domains, i.e., 𝜇𝐿 |𝐿∩𝐿′ = 𝜇𝐿′ |𝐿∩𝐿′ for each pair of sets 𝐿, 𝐿′ with the structure above. Such

distributions can be seen as an abstraction of fractional solutions in the context of Sherali-Adams

linear programming hierarchies [27], which are convenient in our approach.

If we denote lpcut(𝑠, 𝑡) = Pr𝑓 ∼𝜇𝐵∪{𝑠,𝑡 } [𝑓 (𝑠) ≠ 𝑓 (𝑡)] for any 𝑠, 𝑡 ∈ 𝑉 (𝐺), and an arbitrary bag 𝐵

of B, we can compute the collection of distributions that minimizes

𝛼 :=

∑
{𝑠,𝑡 }∈𝐸𝐺 cap{𝑠,𝑡 } · lpcut(𝑠, 𝑡)∑
{𝑠,𝑡 }∈𝐸𝐷 dem{𝑠,𝑡 } · lpcut(𝑠, 𝑡)

.

We say that 𝛼 is the cut sparsity predicted by distributions {𝜇𝐿}𝐿 . Notice that lpcut is well defined
by the consistency requirement, since the choice of 𝐵 does not impact the distribution over {𝑠, 𝑡}-
assignments. For ease of notation, we will refer to the implied distribution over some vertex set

𝑋 ⊆ 𝐵 ∪ {𝑠, 𝑡} by 𝜇𝑋 , where formally 𝜇𝑋 = 𝜇𝐵∪{𝑠,𝑡 } |𝑋 .
Such a collection of distributions can be computed in time 2

𝑂 (𝑤 (T) ) · 𝑛𝑂 (1)
, using Sherali-Adams

linear programming hierarchies restricted to subsets of the form 𝐵𝑖 ∪{𝑠, 𝑡} (see Chlamtáč et al. [11]).

This motivates the function name lpcut. Additionally, such a linear program is a relaxation of the

Sparsest-Cut problem, and thus 𝛼 is a lower bound for the minimum sparsity of a cut.

Algorithm 1 obtains a 𝑉 (𝐺)-assignment 𝑓 by rounding this collection of distributions {𝜇𝐿}:
starting at a bag 𝐵0 (which is considered the root), it chooses an assignment for vertices in 𝐵0 by

sampling from the distribution 𝜇𝐵0
; then, for each bag 𝐵 for which its parent 𝐵′

is processed, it

chooses a 𝐵-assignment according to 𝜇𝐵 conditioned on the assignment for 𝐵 ∩ 𝐵′
. As we will see,

this rounding approximately preserves the probability of cutting a pair (𝑠, 𝑡), thus implying an

approximation to the problem.

We now recall a number of useful results about the algorithm and the assignment it computes.

Details about the algorithm and the attendant lemmas can be found in the work of Chlamtáč et

al. [11].

Denote by A the distribution over 𝑉 (𝐺)-assignments produced by the algorithm.
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Lemma 3.4 ([11, Lemma 3.3]). For every bag 𝐵 the assignment 𝑓 |𝐵 computed by Algorithm 1 is

distributed according to 𝜇𝐵 , meaning Pr𝑓 ∼A [𝑓 |𝐵 = 𝑓 ′] = Pr𝑓 ∗∼𝜇𝐵 [𝑓 ∗ = 𝑓 ′] for all 𝑓 ′ ∈ F [𝐵].

A direct consequence of this lemma is the fact that any edge {𝑠, 𝑡} of 𝐺 is cut by the algorithm

with probability lpcut(𝑠, 𝑡). In particular, the expected capacity of the rounded cut is therefore∑︁
{𝑠,𝑡 }∈𝐸𝐺

cap{𝑠,𝑡 } · lpcut(𝑠, 𝑡) ,

according to the distributions {𝜇𝐿} . However, the same property does not hold for the demand

edges in 𝐷 , since the Lemma 3.4 only applies to bags of T . Specifically, the bags of T do not

necessarily contain all of the edges of 𝐷 , as we do not assume that 𝐷 has bounded treewidth.

Denote by algcut(𝑠, 𝑡) the probability that the algorithm separates 𝑠 and 𝑡 , that is, algcut(𝑠, 𝑡) =
Pr𝑓 ∼A [𝑓 (𝑠) ≠ 𝑓 (𝑡)]. We would like to lower bound the value algcut(𝑠, 𝑡) ≥ 𝑐 lpcut(𝑠, 𝑡) for all
demand edges {𝑠, 𝑡} and some value 𝑐 > 0. This would imply that the expected demand of the

rounded cut is at least 𝑐
∑

{𝑠,𝑡 }∈𝐸𝐷 dem{𝑠,𝑡 } lpcut(𝑠, 𝑡), and having a good expected demand and

capacity is sufficient for computing a good solution by the following observation.

Observation 3.5 ([11], Remark 4.3). Let {𝜇𝐿}𝐿 be a collection of distributions and 𝛼 be the cut

sparsity predicted by {𝜇𝐿}𝐿 .
Then if algcut(𝑠, 𝑡) ≥ 𝑐 · lpcut(𝑠, 𝑡) for all {𝑠, 𝑡} ∈ 𝐸𝐷 and algcut(𝑠, 𝑡) = lpcut(𝑠, 𝑡) for all

{𝑠, 𝑡} ∈ 𝐸𝐺 , we have

E𝑓 ∼A


∑︁

{𝑠,𝑡 }∈𝐸𝐺

cap{𝑠,𝑡 } |𝑓 (𝑠) − 𝑓 (𝑡) | − 𝛼

𝑐

∑︁
{𝑠,𝑡 }∈𝐸𝐷

dem{𝑠,𝑡 } |𝑓 (𝑠) − 𝑓 (𝑡) |
 ≤ 0 .

Furthermore, an assignment 𝑓 is 𝑐-approximate if the value in the expectation above is non-positive,

and such a solution can either be obtained by repeated rounding or by derandomization using the

method of conditional expectations, without increasing the asymptotic run time.

This observation implies that the bottleneck to obtaining a good approximation factor is the

extent to which our rounding algorithm can approximate the marginal of 𝜇𝐿 on the individual

edges of 𝐷 . Our main result relates this marginal to the combinatorial diameter of T . It can now be

stated as follows:

Theorem 3.6. Let (𝐺,𝐷, cap, dem) be an instance of Sparsest-Cut, and (T ,B) a tree decomposition

of 𝐺 with width𝑤 (T ,B) and combinatorial diameter Δ(T ,B).
Then SC-Round satisfies algcut(𝑠, 𝑡) ≥ Ω

(
1

Δ(T,B)2
)
· lpcut(𝑠, 𝑡) for every {𝑠, 𝑡} ∈ 𝐸𝐷 . Thus, we have

a factor-𝑂 (Δ(T ,B)2) approximation algorithm for Sparsest-Cut with run time 2
𝑂 (𝑤 (T,B) ) · 𝑛𝑂 (1)

.

The rest of this section is devoted to proving this theorem.

3.3 Step 1: Reduction to Short Paths
In this section, we show that when the combinatorial diameter of the tree decomposition is

𝛿 = Δ(T ,B), the analysis can be reduced to the case of a path decomposition of length 𝛿 . We

employ the following lemma to simplify our analysis of the behavior of the algorithm.

Lemma 3.7 ([11, Lemma 3.4]). The distribution over the assignments 𝑓 is invariant under any

connected traversal of T , i.e., the order in which bags are processed does not matter, as long as they

have a previously processed neighbor. The choice of the first bag 𝐵0 also does not impact the distribution.
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Let {𝑠, 𝑡} ∈ 𝐸𝐷 be a demand edge. If 𝑠 and 𝑡 are contained in a common bag, then algcut(𝑠, 𝑡) =
lpcut(𝑠, 𝑡) by Lemma 3.4 and we are done; therefore, we assume that there is no bag containing

both 𝑠 and 𝑡 . We want to estimate the probability that 𝑠 and 𝑡 separated by the algorithm, that is,

the probability that 𝑓 (𝑠) ≠ 𝑓 (𝑡).
The lemma above allows us to reduce to the case in which the algorithm first rounds a bag 𝐵1

containing 𝑠 , then rounds bags 𝐵2, . . . , 𝐵ℓ−1 along the path to a bag 𝐵ℓ containing 𝑡 , and finally 𝐵ℓ .

At this point the algorithm has already assigned 𝑓 (𝑠) and 𝑓 (𝑡), so the remaining bags of T can be

rounded in any connected order without impacting the separation probability. Hence, it is sufficient

to characterize the behavior of the rounding algorithm along paths in T .

Let 𝑃 be the shortest path connecting a bag containing 𝑠 to a bag containing 𝑡 ; denote such path

by 𝑃 = 𝑣1𝑣2 . . . 𝑣ℓ such that 𝑠 ∈ 𝐵𝑣1 and 𝑡 ∈ 𝐵𝑣ℓ . By Lemma 3.7, we can assume that the algorithm

first processes 𝐵𝑣1 , and then all other bags 𝐵𝑣2 , . . . , 𝐵𝑣ℓ , in this order. Let B𝑃 = {𝐵𝑣𝑖 }ℓ𝑖=1.
Observe that, except for 𝑣1 and 𝑣ℓ , no other bag of 𝑃 contains 𝑠 or 𝑡 . We repeatedly apply the

reduction rule from Definition 3.2 until the resulting path has length at most 𝛿 . The following

lemma asserts that the distribution of the algorithm is preserved under this reduction rule.

We slightly abuse the notation and denote by A the distribution of our algorithm on path 𝑃

starting from 𝑣1.

Lemma 3.8. Let 𝑢, 𝑣,𝑤 be three consecutive internal nodes on 𝑃 with 𝐵𝑣 ∩ 𝐵𝑤 ⊆ 𝐵𝑢 . Let 𝑃
′
be the

simplification of 𝑃 obtained by bypassing 𝑣 , and let A′
be the distribution obtained by running the

algorithm on path 𝑃 ′
, starting on 𝑣1. Then A′

is exactly the same as A restricted to 𝐵(𝑃 ′).

Proof. We can assume, without loss of generality, that 𝑢, 𝑣,𝑤 appear on 𝑃 in the order of round-

ing; for otherwise, we apply Lemma 3.7 twice: first, to reverse 𝑃 , and preserve the distribution A;

then, to undo the reversing of 𝑃 ′
caused by the previous application.

We modify the path decomposition (𝑃,B𝑃 ) into a (tree) decomposition ( ˆT , ˆB) as follows: remove

bag 𝑣 and add two new bags 𝑣 ′, 𝑣 ′′ where bag 𝑣 ′ is connected to 𝑢 and𝑤 with 𝐵𝑣′ = 𝐵𝑢 ∩ 𝐵𝑣 and 𝑣
′′

is connected to 𝑣 ′ with 𝐵𝑣′′ = 𝐵𝑣 . This remains a tree decomposition for the vertices in 𝐵(𝑃) since
vertices in 𝐵𝑣 \ 𝐵𝑢 only occur in the bag 𝐵𝑣′′ (due to our assumption that 𝐵𝑣 ∩ 𝐵𝑤 ⊆ 𝐵𝑢 ).

Running the algorithm SC-Round on
ˆT produces exactly the same distribution as A, since

we can first round the bags from 𝑠 to 𝑢, then 𝑣 ′ and 𝑣 ′′, and then the bags from 𝑢 to 𝑡 . Since

𝐵(𝑃 ′) = 𝐵(𝑃) \ (𝐵𝑣′′ \ 𝐵𝑣′ ), we have that by Lemma 3.7, A|𝐵 (𝑃 ′ ) is the distribution of SC-Round

on the path 𝑃 = 𝑣1 . . . 𝑢𝑣
′𝑤 . . . 𝑣ℓ , obtained by removing 𝑣 ′′ from ˆT . Now since 𝐵𝑣′ ⊆ 𝐵𝑢 , the

rounding algorithm in fact does not do anything at bag 𝑣 ′, so it can be removed without affecting

the distribution. We obtain path 𝑃 ′
as a result, and thus A|𝐵 (𝑃 ′ ) is the same distribution as A′

. □

This result allows us conduct the rounding analysis on simplifications of paths. It remains to

show that this is beneficial, that is, that the rounding error can be bounded by the length of the

path on which we round. As in the work of Chlamtáč et al. [11], we use Markov flow graphs to

analyze that error. However, as the length of their paths is Θ(log𝑛), they need to derive a bound

depending not on that length, but on the width of the decomposition. Since we can now bound the

length, we only need a small part of their argument.

3.4 Step 2: Markov Flow Graphs
Let 𝑃 = 𝑣1, . . . , 𝑣ℓ be a path with length ℓ and 𝑠 ∈ 𝐵𝑣1 , 𝑡 ∈ 𝐵𝑣ℓ . We run Algorithm 1 from 𝑣1
to 𝑣ℓ to compute some assignment 𝑓 . Let A be the probability distribution of the resulting assign-

ment 𝑓 . Recall that algcut(𝑠, 𝑡) denotes the probability that the algorithm assigns 𝑓 (𝑠) ≠ 𝑓 (𝑡), and
lpcut(𝑠, 𝑡) is the probability that 𝑠 and 𝑡 are separated according to the distributions {𝜇𝐿}𝐿 , i.e.,
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Pr𝑓 ∼𝜇𝐵∪{𝑠,𝑡 } [𝑓 (𝑠) ≠ 𝑓 (𝑡)]. In the second step, we analyze the probability of algcut(𝑠, 𝑡) in terms of

lpcut(𝑠, 𝑡). This step is encapsulated in the following lemma.

Lemma 3.9. There exists a directed layered graph 𝐻 containing nodes 𝑠0, 𝑠1, 𝑡0, 𝑡1 ∈ 𝑉 (𝐻 ) and a

weight function𝑤𝐻 on the edges, satisfying the following properties:

(1) For 𝑖 = 0, 1, we have that Pr𝑓 ∼A [𝑓 (𝑠) = 𝑖 ∧ 𝑓 (𝑡) = 1− 𝑖] is at least an Ω(1/ℓ2)-fraction of the

minimum (𝑠𝑖 , 𝑡1−𝑖 )-cut of 𝐻 , where ℓ is the length of the path 𝑃 .

(2) For 𝑖 = 0, 1, the value of a maximum (𝑠𝑖 , 𝑡1−𝑖 )-flow in𝐻 is at least Pr𝑓 ∼𝜇 [𝑓 (𝑠) = 𝑖 ∧ 𝑓 (𝑡) = 1−𝑖].

With Lemma 3.9 in hand, we can now complete the proof of Theorem 3.6 as follows.

Proof of Theorem 3.6. We run the algorithm of Chlamtáč et al. to get some𝑉 (𝐺)-assignment 𝑓 .

Consider a pair {𝑠, 𝑡} ∈ 𝐸𝐷 . Using Lemma 3.7 and Lemma 3.8, we can reduce the analysis to a

path 𝑃 of length at most 𝛿 = Δ(T ,B), which is a simplification of a path in T . Now, by Lemma 3.9

applied with ℓ = 𝛿 and max-flow-min-cut theorem, we get that

algcut(𝑠, 𝑡) = Pr

𝑓 ∼A
[𝑓 (𝑠) = 0 ∧ 𝑓 (𝑡) = 1] + Pr

𝑓 ∼A
[𝑓 (𝑠) = 1 ∧ 𝑓 (𝑡) = 0]

≥ Ω
(
1/𝛿2

)
(mincut(𝑠0, 𝑡1) +mincut(𝑠1, 𝑡0))

= Ω
(
1/𝛿2

)
(maxflow(𝑠0, 𝑡1) +maxflow(𝑠1, 𝑡0))

≥ Ω
(
1/𝛿2

) (
Pr

𝑓 ∼𝜇
[𝑓 (𝑠) = 0 ∧ 𝑓 (𝑡) = 1] + Pr

𝑓 ∼𝜇
[𝑓 (𝑠) = 1 ∧ 𝑓 (𝑡) = 0]

)
= Ω

(
1/𝛿2

)
lpcut(𝑠, 𝑡) .

Recall that, by consistency of the distributions, the probability of an {𝑠, 𝑡}-assignment is the same

for every distribution 𝜇𝐿 s.t. {𝑠, 𝑡} ⊆ 𝐿; for this reason, we slightly abuse notation and write Pr𝑓 ∼𝜇
to mean the probability according to any distribution containing {𝑠, 𝑡}.
We conclude that 𝑓 separates each pair {𝑠, 𝑡} with probability that is a factor of𝑂 (𝛿2) away from

lpcut(𝑠, 𝑡) as desired. Applying Observation 3.5 with 𝑐 = Ω(1/𝛿2), we can obtain (deterministically)

an assignment 𝑓 ∗ that is an 𝑂 (𝛿2)-approximation for the Sparsest-Cut instance.
Finally, the run time can be seen to be 2

𝑂 (𝑤 (T,B) ) · 𝑛𝑂 (1)
using the arguments by Chlamtáč et

al. [11], which are summarized as follows: To compute the distributions {𝜇𝐿}𝐿 , we write a linear
program containing a variable for every subset 𝑆 ⊆ 𝐿 for every considered set 𝐿 = 𝐵 ∪ {𝑠, 𝑡}.
Therefore, we take subsets of at most 𝑂 (𝑛) sets, each of size at most 𝑤 (T ,B) + 3, which totals

to 𝑂 (𝑛) · 2𝑤 (T,B)
. Both solving the linear program to obtain the distributions and the rounding

procedure are polynomial in the number of variables, thus leading to the claimed run time. □

The rest of this section is dedicated to proving Lemma 3.9. The tools needed for this proof are

implicit in the work of Chlamtáč et al. [11]. We restate them for the sake of completeness and in

order to adjust it to our terminology. To start, we will take care of a small technical detail inherent

to the analysis of Chlamtáč et al., requiring the LP solution to be symmetric in 0 and 1.

Definition 3.10. For any set 𝑋 and 𝑋 -assignment 𝑔 we define the mirror of 𝑔 to be ⃗

⃗

𝑔 := 𝜎 ◦ 𝑔,
where 𝜎 (0) = 1 and 𝜎 (1) = 0.

Notice that the mirror of an assignment represents the same cut; it merely exchanges the labels.

The approximation factor analysis of Chlamtáč et al. requires the distributions to be symmetric

in their labeling, in particular Pr[𝑓 (𝑣) = 0] = Pr[𝑓 (𝑣) = 1] for all 𝑣 ∈ 𝑉 (𝐺). They resolve this by

demanding symmetry via the Sherali-Adams LP which can be shown to not worsen the relaxation.

Using the following lemma, we are able to prove that the rounding analysis also holds in the

non-symmetric case.
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Lemma 3.11. Let 𝐺, (T , {𝐵𝑖 }𝑖∈𝑉 (T) ), {𝜇𝐿} be the input of Algorithm 1. Consider the modified

decomposition (T ,
{
𝐵′
𝑖

}
𝑖∈𝑉 (T′ ) ), where a dummy vertex 𝑒 has been added to every bag 𝐵′

𝑖 , and the

collection of distributions {⃗

⃗

𝜇𝐿} defined as:

⃗

⃗

𝜇
𝐿∪{𝑒 } (𝑔′, 𝑒 → 0) = 1

2

𝜇𝐿 (𝑔′), ⃗

⃗

𝜇
𝐿∪{𝑒 } (𝑔′, 𝑒 → 1) = 1

2

𝜇𝐿 (⃗

⃗

𝑔′) ∀𝑔′ ∈ F [𝐿] .

Then ⃗

⃗

𝜇 has the following properties:

(1) For all 𝐿′ = 𝐿 ∪ {𝑒}, 𝑔′ ∈ F [𝐿′], we have that Pr𝑔∼⃗

⃗

𝜇
𝐿′ [𝑔 = 𝑔′] = Pr𝑔∼⃗

⃗

𝜇
𝐿′ [𝑔 = ⃗

⃗

𝑔′]
(2) If 𝑔, 𝑔∗ are random variables representing the resulting assignments of Algorithm 1 run on

𝐺, (T , {𝐵𝑖 }𝑖 ), {𝜇𝐿}, and 𝐺, (T ,
{
𝐵′
𝑖

}
𝑖 ), {⃗

⃗

𝜇𝐿′ }, respectively, then

Pr[𝑔 = 𝑔′] + Pr[𝑔 = ⃗

⃗

𝑔′] = Pr[𝑔∗ |𝑉 (𝐺 ) = 𝑔′] + Pr[𝑔∗ |𝑉 (𝐺 ) = ⃗

⃗

𝑔′] ∀𝑔′ ∈ F [𝑉 (𝐺)] .

The content of the lemma is at its core not very surprising. If we do not care about the labels, we

do not care about whether the algorithm outputs 𝑔 or⃗

⃗

𝑔. But if that is the case, the distributions

also should not need to maintain some distinction between the labels. In fact, one could run the

algorithm unmodified, and then permute the labels with probability 1/2. Clearly, this does not
change the distribution over cuts, and the choice of labels is now symmetric.

Proof. To make the argument formal, we shall use the value of 𝑔(𝑒) to indicate whether

or not we are permuting the labels. By Lemma 3.7 we can model the rounding algorithm for

𝐺, (T ,
{
𝐵′
𝑖

}
𝑖 ), {⃗

⃗
𝜇𝐿′ } as choosing first a value for 𝑔(𝑒), and then proceeding in the same order as the

rounding over 𝐺, (T , {𝐵𝑖 }𝑖 ), {𝜇𝐿}. With probability 1/2 we get 𝑔(𝑒) = 0. Since every bag contains

𝑒 , 𝑒 is always conditioned on, so the symmetrized algorithm performs exactly the same computa-

tions as the original run would. Meanwhile if 𝑔(𝑒) = 1, the symmetrized algorithm samples some

intermediate assignment 𝑔′ with exactly the probability that the original algorithm would have

sampled
⃗

⃗

𝑔′.
As a result,

Pr[𝑔∗ |𝑉 (𝐺 ) = 𝑔′] = 1

2

Pr[𝑔 = 𝑔′] + 1

2

Pr [⃗

⃗

𝑔 = 𝑔′] ∀𝑔′ ∈ F [𝑉 (𝐺)] ,

which implies

Pr[𝑔∗ |𝑉 (𝐺 ) = 𝑔′] + Pr[𝑔∗ |𝑉 (𝐺 ) = ⃗

⃗

𝑔′] = Pr[𝑔 = 𝑔′] + Pr[𝑔 = ⃗

⃗

𝑔′] ∀𝑔′ ∈ F [𝑉 (𝐺)] . □

Notice that while we could construct the symmetrized ⃗

⃗

𝜇 efficiently, we do not need to, as 𝜇 is

distributed identically, and thus satisfies the same bounds, as ⃗

⃗

𝜇. More concretely, we apply the

analysis to ⃗

⃗

𝜇, which is possible because it is symmetric. We can then use Lemma 3.11 to conclude

that the probabilities of cutting a pair of vertices in 𝜇 and⃗

⃗

𝜇 are the same, since these probabilities are

symmetric, in the sense that Pr[𝑓 (𝑠) ≠ 𝑓 (𝑡)] = Pr[𝑓 (𝑠) = 1 ∧ 𝑓 (𝑡) = 0] + Pr[𝑓 (𝑠) = 0 ∧ 𝑓 (𝑡) = 1] .
Therefore, the bounds on the probabilities of cutting a pair in⃗

⃗

𝜇 apply also to 𝜇, and thus our results

apply obtaining a solution directly from 𝜇.

We now proceed as follows: first, we describe the construction of the graph 𝐻 , and then we

proceed to analyze the values of maximum flow and minimum cut. We will only analyze the flow

and cut for 𝑖 = 0, that is, (𝑠0, 𝑡1)-flow and (𝑠0, 𝑡1)-cut. The other case is analogous.
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Construction of Graph 𝐻 : By Lemma 3.11 we can assume that the distributions {𝜇𝐿}𝐿 are sym-

metric in the labels {0, 1}. In particular, this gives Pr[𝑓 (𝑣) = 1] = Pr[𝑓 (𝑣) = 0] = 1/2 for any

vertex 𝑣 .

The rounding can be modeled by a simple Markov process. Denote by 𝐼0, . . . , 𝐼ℓ the sets that

are conditioned on in Algorithm 1, 𝐼𝑖 = 𝐵𝑣𝑖 ∩ 𝐵𝑣𝑖+1 for 𝑖 ∈ {1, . . . , ℓ − 1}; we refer to these sets as

conditioning sets.

For the initial and final sets of the rounding procedure we take 𝐼0 = {𝑠}, 𝐼ℓ = {𝑡}. Now we are

ready to describe our graph 𝐻 :

• Vertices: Vertices of 𝐻 are arranged into layers 𝐿0, . . . , 𝐿ℓ with 𝐿𝑖 = F [𝐼𝑖 ]. Observe that

|𝐿𝑖 | = 2
|𝐼𝑖 |
. The vertices of 𝐻 represent the intermediate states the algorithm might reach.

• Edges: For each 𝑖 , there is a directed edge from every vertex in 𝐿𝑖 to every vertex in 𝐿𝑖+1.
The weight of the edge (𝑓𝑖 , 𝑓𝑖+1), for 𝑓𝑖 ∈ 𝐿𝑖 , 𝑓𝑖+1 ∈ 𝐿𝑖+1, is equal to the probability of the joint

event,𝑤𝐻 (𝑓𝑖 , 𝑓𝑖+1) = Pr[𝑓 |𝐼𝑖 = 𝑓𝑖 ∧ 𝑓 |𝐼𝑖+1 = 𝑓𝑖+1].
We remark that the weight is 0 whenever 𝑓𝑖 and 𝑓𝑖+1 are contradictory, and that probabilities

are well defined, as 𝐼𝑖 ∪ 𝐼𝑖+1 ⊆ 𝐵𝑖+1.

Observe that the weight of an edge is the probability that both of its endpoints are reached by

the algorithm, and hence the probability that the algorithm transitions along that edge.

Observation 3.12. Let I =
⋃

𝑖 𝐼𝑖 . The distribution A|I can be viewed as the following random

walk in 𝐻 : Pick a random vertex in 𝐿0 and start taking a random walk where each edge is taken with

probability proportional to its weight. Formally, once a node 𝑓𝑖 is reached, choose the next node 𝑓𝑖+1
with probability𝑤𝐻 (𝑓𝑖 , 𝑓𝑖+1)/Pr[𝑓 |𝐼𝑖 = 𝑓𝑖 ].

At this point, we renameA := A|I . Notice that the layer 𝐿0 contains two vertices corresponding
to the assignment 𝑓 (𝑠) = 0 and 𝑓 (𝑠) = 1, respectively. We denote them by 𝐿0 = {𝑠0, 𝑠1}. Similarly,

𝐿ℓ = {𝑡0, 𝑡1}. Notice further that Pr𝑓 ∼A [𝑓 (𝑠) = 0, 𝑓 (𝑡) = 1] is exactly the probability that the

random walk starts at 𝑠0 ∈ 𝐿0 and ends at 𝑡1 ∈ 𝐿ℓ .

Maximum (𝑠0, 𝑡1)-Flow: We are now ready to show that the value of the maximum (𝑠0, 𝑡1)-flow
is at least Pr𝑓 ∼𝜇 [𝑓 (𝑠) = 0, 𝑓 (𝑡) = 1].

We define the flow 𝑔 : 𝐸 (𝐻 ) → R≥0 as follows, for 𝑖 ∈ {1, . . . , ℓ − 1}, 𝑓𝑖 ∈ 𝐿𝑖 and 𝑓𝑖+1 ∈ 𝐿𝑖+1:

𝑔(𝑓𝑖 , 𝑓𝑖+1) = Pr

𝑓 ∼𝜇𝐵𝑣𝑖+1∪{𝑠,𝑡 }
[𝑓 (𝑠) = 0, 𝑓 (𝑡) = 1, 𝑓 |𝐼𝑖 = 𝑓𝑖 , 𝑓 |𝐼𝑖+1 = 𝑓𝑖+1] .

We remark that 𝑔 is an 𝑠0-𝑡1-flow, that is, it satisfies flow conservation at all vertices in 𝐻 except

𝑠0, 𝑡1, and the capacities of graph 𝐻 are respected, that is, 𝑔(𝑒) ≤ 𝑤𝐻 (𝑒) for all 𝑒 ∈ 𝐸 (𝐻 ). The value
of 𝑔 is given by: ∑︁

(𝑠0,𝑓 ∗ ) ∈𝛿+ (𝑠0 )
𝑔(𝑠0, 𝑓 ∗) =

∑︁
𝑓 ∗∈F[𝐼1 ]

Pr

𝑓 ∼𝜇𝐵𝑣
1
∪{𝑠,𝑡 }

[𝑓 (𝑠) = 0, 𝑓 (𝑡) = 1, 𝑓 |𝐼1 = 𝑓 ∗]

= Pr

𝑓 ∼𝜇𝐵𝑣
1
∪{𝑠,𝑡 }

[𝑓 (𝑠) = 0, 𝑓 (𝑡) = 1] .

This concludes the proof of Point 2 of Lemma 3.9.

A Potential Function: Before we show a cut with the desired capacity, we need to introduce some

notation. For 𝑖 = 0, . . . , ℓ , let 𝑋𝑖 be a random variable indicating the vertex in 𝐿𝑖 visited by the

random walk (i.e., picked by the algorithm. We denote by X = 𝑋0𝑋1 . . . 𝑋ℓ the path taken in the

random walk process. We can interchangeably view distribution A as either the distribution that

samples an assignment 𝑓 : I → {0, 1} or one that samples a (random walk) path X.
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We define, for every layer 𝐿𝑖 and every vertex 𝑣 ∈ 𝐿𝑖 ,

𝐴(𝑣) := Pr

X∼A
[𝑋0 = 𝑠0 | 𝑋𝑖 = 𝑣] − 1

2

.

Intuitively, this function captures the extent to which 𝑣 has information about the initial state of

the Markov process. On the one hand, if 𝐴(𝑣) is equal to 0, 𝑣 knows essentially nothing about 𝑋0,

the choice of 𝑣 does not imply anything about 𝑋0. On the other hand, if 𝐴(𝑣) is far from 0, then we

can glean some information about 𝑋0 from 𝑣 being visited; in particular, if the probability that 𝑠

and 𝑡 are cut is low, we must have 𝐴(𝑡1) ≈ −1/2.
To track how 𝐴 changes from layer to layer, we use the potential function 𝜙 : {0, . . . , ℓ} → R≥0,

which we define as:

𝜙 (𝑖) := VarX∼A [𝐴(𝑋𝑖 )] .

The following argument by Chlamtáč et al. bounds the change in potential in terms of the

probability that 𝑋0 = 𝑠0 and 𝑋ℓ = 𝑡1.

Corollary 3.13 (From [11, Lemma 5.2]). Without loss of generality, we can assume that

𝜙 (0) − 𝜙 (ℓ) ≤ 2 PrX∼A [𝑋0 = 𝑠0 ∧ 𝑋ℓ = 𝑡1].

Proof. Suppose that PrX∼A [𝑋0 = 𝑠0 ∧ 𝑋ℓ = 𝑡1] > 1

4
. Then we already have that algcut(𝑠, 𝑡) ≥

1

2
lpcut(𝑠, 𝑡) and thus do not need any further analysis. Otherwise, we observe that 𝐿0 and 𝐿ℓ only

contain two nodes each. We can therefore compute the variances explicitly:

𝜙 (0) − 𝜙 (ℓ) = 𝐴(𝑠0)2 −𝐴(𝑡1)2

=
1

4

−𝐴(𝑡1)2

=
1

4

− (2 Pr

X∼A
[𝑋0 = 𝑠0 ∧ 𝑋ℓ = 𝑡1] −

1

2

)2

≤ 2 Pr

X∼A
[𝑋0 = 𝑠0 ∧ 𝑋ℓ = 𝑡1] . □

Minimum (𝑠0, 𝑡1)-cut: We are now ready to analyze the value of minimum (𝑠0, 𝑡1)-cut in 𝐻 . It

suffices to give a lower bound on 𝜙 (0)−𝜙 (ℓ) by Corollary 3.13. The following lemma from Chlamtáč

et al. [11] is necessary to control the change of 𝜙 when moving between layers.

Lemma 3.14 ([11, Lemma 5.2]). For all 0 < 𝑙1 < 𝑙2 < ℓ we have

𝜙 (𝑙1) − 𝜙 (𝑙2) =
∑︁

𝑢∈𝐿𝑙
1
,𝑣∈𝐿𝑙

2

Pr

X∼A
[𝑋𝑙1 = 𝑢 ∧ 𝑋𝑙2 = 𝑣] (𝐴(𝑢) −𝐴(𝑣))2 .

With Lemma 3.14 it is possible to prove the following lemma which is shown implicitly by

Chlamtáč et al. [11]. We provide a full proof for completeness.

Lemma 3.15 (Analogous to [11, Lemma 5.4]). Let𝐶 be the set of edges (𝑓𝑖 , 𝑓𝑖+1) in 𝐸 (𝐻 ) such that

|𝐴(𝑓𝑖 ) −𝐴(𝑓𝑖+1) | ≥ 𝜌 , for some threshold 𝜌 > 0. Then

∑
𝑒∈𝐶 𝑤𝐻 (𝑒) ≤ (𝜙 (0) − 𝜙 (ℓ)) · 1/𝜌2.
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Proof. It holds that∑︁
𝑒∈𝐶

𝑤𝐻 (𝑒) =
∑︁

𝑖∈0,...,ℓ−1

∑︁
𝑓𝑖 ∈𝐿𝑖 ,𝑓𝑖+1∈𝐿𝑖+1

|𝐴(𝑓𝑖 )−𝐴(𝑓𝑖+1 ) |≥𝜌

𝑤𝐻 (𝑓𝑖 , 𝑓𝑖+1)

≤ 1

𝜌2

∑︁
𝑖∈0,...,ℓ−1

∑︁
𝑓𝑖 ∈𝐿𝑖 ,𝑓𝑖+1∈𝐿𝑖+1

|𝐴(𝑓𝑖 )−𝐴(𝑓𝑖+1 ) |≥𝜌

𝑤𝐻 (𝑓𝑖 , 𝑓𝑖+1) (𝐴(𝑓𝑖 ) −𝐴(𝑓𝑖+1))2

≤ 1

𝜌2

∑︁
𝑖∈0,...,ℓ−1

(𝜙 (𝑖 + 1) − 𝜙 (𝑖))

=
1

𝜌2
(𝜙 (0) − 𝜙 (ℓ)),

where the second inequality is an application of Lemma 3.14. □

We can apply Lemma 3.15 in the following fashion. Suppose 𝐴(𝑡1) ≥ 0. In that case we have

Pr[𝑋0 = 𝑠0 | 𝑋ℓ = 𝑡1] ≥ 1/2, so 𝑠 and 𝑡 are cut with probability at least
1

2
lpcut(𝑠, 𝑡). This error is

already small enough, so assume 𝐴(𝑡1) < 0. Then 𝐴(𝑠0) − 𝐴(𝑡1) > 1/2. Since every path from 𝑠0
to 𝑡1 has exactly ℓ edges, any such path must contain an edge (𝑓𝑖 , 𝑓𝑗 ) with 𝐴(𝑓𝑖 ) −𝐴(𝑓𝑗 ) > 1/(2ℓ).
Cutting all such edges therefore separates 𝑠0 and 𝑡1. Hence, by applying Lemma 3.15, the minimum

𝑠0-𝑡1-cut has size at most

𝑂 (ℓ2) (𝜙 (0) − 𝜙 (ℓ)) ≤ 𝑂 (ℓ2) Pr[𝑋0 = 𝑠0 ∧ 𝑋ℓ = 𝑡1]
= 𝑂 (ℓ2) Pr[𝑓 (𝑠) = 0 ∧ 𝑓 (𝑡) = 1] .

This concludes the proof of Point 1 of Lemma 3.9. We see that the cutting probability predicted

by the distributions is realised by the rounded solution 𝑓 , up to a factor Ω(1/ℓ2).
The analysis of this section gives an alternative to the one given by Chlamtáč et al.. Their

constant of approximation depends on the size of the layers (i.e., the width of the bags of the tree

decomposition) of 𝐻 rather than the number of layers (i.e., the length of the path on which the

analysis is performed). While the layer sizes depend only on 𝑘 , the dependence is exponential. The

number of layers meanwhile is a priori log(𝑛), which would give a worse approximation guarantee.

However, we will show how to modify a tree decomposition to ensure that all paths used in the

analysis are short so that 𝐻 has few layers.

4 COMBINATORIALLY SHALLOW TREE DECOMPOSITIONS
In this section, we show how to construct tree decompositions with low combinatorial diameter, thus

achieving the approximation results stated in Theorem 1.1. We start by restricting our consideration

to decompositions that are shallow in the traditional sense. For a given graph 𝐺 with treewidth 𝑘 ,

we consider a tree decomposition (T ,B) with diameter 𝑑 = 𝑂 (log𝑛) and width 𝑂 (𝑘) [4, 20] (see
Section 2 for details). Fix some root 𝑟 in 𝑉 (T ).

Our goal is now to modify (T ,B) such that every node has a combinatorially short path to 𝑟 . This

is a necessary requirement, but perhaps surprisingly it is not sufficient. The combinatorial lengths

of paths do not necessarily induce a metric
3
on 𝑉 (T ), and therefore bounding the length to 𝑟

does not on its own suffice to bound the combinatorial diameter. Instead, for any pair 𝑠, 𝑡 ∈ 𝑉 (T ),
we will bound the combinatorial length from 𝑠 and 𝑡 to their lowest common ancestor, which is

sufficient to bound the combinatorial length of T𝑠↔𝑡 .

3
Consider bags {𝑎𝑏}, {𝑎𝑏𝑐 }, {𝑎𝑐𝑑 }, {𝑎𝑑𝑒 }, {𝑎𝑒𝑓 }, {𝑎𝑓 𝑔}, {𝑎} occuring in that order as a path. The whole path can be

reduced to just the endpoints. The subpath {𝑎𝑏}, {𝑎𝑏𝑐 }, {𝑎𝑐𝑑 }, {𝑎𝑑𝑒 }, {𝑎𝑒𝑓 }, {𝑎𝑓 𝑔} is irreducible. Thus the distance from
{𝑎𝑏} to {𝑎𝑓 𝑔} is larger than the sum of the distances from {𝑎𝑏} to {𝑎} and {𝑎𝑓 𝑔} to {𝑎}.
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(a)

(b)

Fig. 2. Illustration of a path from the root to some node 𝑠 . The square nodes are the synchronization nodes.
The bridge from 𝑦 to its synchronization ancestor is marked in bold in Figure 2a. The dotted nodes in Figure 2b
mark those nodes which can be removed when simplifying the 𝑥-𝑠-path in T ′.

We will not show explicitly that the modified structures are in fact tree decompositions. However,

the following lemma can be used to verify this fact for all of our constructions.

Lemma 4.1. Let (T , {𝐵𝑖 }𝑖∈𝑉 (T) ) be a tree decomposition of a graph𝐺 , rooted at 𝑟 . Then (T , {𝐵′
𝑖 }𝑖∈𝑉 (T) )

is also a tree decomposition of 𝐺 if 𝐵𝑖 ⊆ 𝐵′
𝑖 ⊆ 𝐵𝑖 ∪ 𝐵′

𝑝 (𝑖 ) for all bags 𝐵𝑖 .

Proof. Fix some 𝑠 ∈ 𝑉 (𝐺). We need to show that T ′
𝑠 := {𝑖 ∈ 𝑉 (T ) | 𝑠 ∈ 𝐵′

𝑖 } is connected. As
T𝑠 := {𝑖 ∈ 𝑉 (T )|𝑠 ∈ 𝐵𝑖 } is connected and T𝑠 ⊆ T ′

𝑠 , it suffices to show that any 𝑖 ∈ T ′
𝑠 is connected

to T𝑠 in T ′
𝑠 . We do this by induction over the distance of 𝑖 to the root.

For 𝑖 = 𝑟 we have 𝐵′
𝑟 = 𝐵𝑟 , so either 𝑖 ∉ T ′

𝑠 or 𝑖 ∈ T𝑠 . Otherwise, consider some 𝑖 ∈ T ′
𝑠 , so

𝑠 ∈ 𝐵𝑖 ∪ 𝐵′
𝑝 (𝑖 ) . Then we either have 𝑠 ∈ 𝐵𝑖 , in which case we are done, or 𝑠 ∈ 𝐵′

𝑝 (𝑖 ) . But this gives

𝑝 (𝑖) ∈ T ′
𝑠 , and 𝑝 (𝑖) is closer to 𝑟 than 𝑖 . Thus we can assume that 𝑝 (𝑖) is connected to T𝑠 , and

hence 𝑖 is also connected to T𝑠 via 𝑝 (𝑖). □

We introduce three objects, which we call bridges, highways, and super-highways, and show

that they can be used to prove the three parts of Theorem 1.1.

4.1 Bridges
Fix a parameter 𝜆 ∈ {1, . . . , 𝑑}. Define ℓ : 𝑉 (T ) → N0 to be the level of a node in T , that is, ℓ (𝑖) is
the number of edges on T𝑖↔𝑟 .

Definition 4.2. We call a node 𝑖 ∈ 𝑉 (T ) a synchronization node if its level is a multiple of 𝜆.

Define also the synchronization ancestor 𝜎 (𝑣) of any node 𝑣 to be the first node on the path from 𝑣

to 𝑟 that is a synchronization node, excluding 𝑣 itself.

We can construct a tree decomposition (T ′,B′ =
{
𝐵′
𝑖

}
𝑖∈𝑉 (T′ ) ) by taking T ′ = T and setting

𝐵′
𝑖 = 𝐵(T𝑖↔𝜎 (𝑖 ) ) for each node 𝑖 ∈ 𝑉 (T ), that is, the new bag is obtained by combining all the bags

from 𝑣 up to its synchronization ancestor. This increases the width of the decomposition by a factor

of at most 𝜆. We may view this path connecting 𝑣 to the synchronization point as a bridge crossing
over all intermediate nodes in one step.

Lemma 4.3. It holds that (T ′,B′) has combinatorial diameter 𝑂 (𝑑/𝜆).
Proof. Fix any two nodes 𝑠, 𝑡 ∈ 𝑉 (T ′) and take 𝑥 to be their lowest common ancestor in T ′

.

Then the combinatorial length of T ′
𝑠↔𝑡 is at most the sum of the combinatorial lengths of T ′

𝑠↔𝑥

and T ′
𝑥↔𝑡 .We remark that triangle inequality holds in this case, because 𝑥 is on the path from 𝑠

to 𝑡 . Thus, it suffices to show that the combinatorial length of T ′
𝑠↔𝑥 is 𝑂 (𝑑/𝜆). The result follows

analogously for T ′
𝑥↔𝑡 .
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(a)

(b)

Fig. 3. The bold nodes in Figure 3a mark the bridge and highway from 𝑦 to 𝑟 . The dotted nodes in Figure 3b
illustrate the redundant nodes during the two simplification rounds for the 𝑥-𝑠-path, leaving a path of length 2.

Using the rules of Definition 3.2, we can bypass any node that is neither a synchronization node

nor 𝑠 or 𝑥 . To do this, iteratively pick any such node 𝑣 with neighbors 𝑢 and 𝑤 , where 𝑢 is the

neighbour closer to 𝑠 . The order in which these nodes 𝑣 are bypassed does not matter. Because

no synchronization nodes are ever bypassed, 𝑢 must be somewhere on the subpath from 𝑣 to the

first synchronization node below 𝑣 . Then we have 𝜎 (𝑣) = 𝜎 (𝑢), giving 𝐵′
𝑣 ⊆ 𝐵′

𝑢 and in particular

𝐵′
𝑣 ∩ 𝐵′

𝑤 ⊆ 𝐵′
𝑢 so that 𝑣 can be bypassed.

Therefore, the path {𝑣 ∈ T ′
𝑠↔𝑥 |𝑣 = 𝑠 ∨ 𝑣 = 𝑥 ∨ 𝑣 is a synchronization node} is a simplification

of T ′
𝑠↔𝑥 . Since there are at most 𝑑/𝜆 synchronization nodes on any upward path, the lemma

follows. □

This lemma, in conjunction with Theorem 3.6 and the fact that (T ′,B′) can be computed in

polynomial time from (T ,B), yields:

Corollary 4.4. For every 𝜆, there is an algorithm that computes an 𝑂 ((𝑑/𝜆)2)-approximation for

Sparsest-Cut instances where 𝐺 has treewidth at most 𝑘 , in time 2
𝑂 (𝜆𝑘 ) · 𝑛𝑂 (1)

.

Setting 𝜆 = ⌈𝑑/𝑘⌉ results in an 𝑂 (𝑘2)-approximation in time 2
𝑘 · 𝑛𝑂 (1)

, while setting 𝜆 = 𝑑 gives

an 𝑂 (1)-approximation in time 𝑛𝑂 (𝑘 )
.

4.2 Highways
The idea of extending bags towards the root can be exploited further by adding the vertices in a

synchronization bag to all of its descendants. We may regard this as giving each node a bridge to

the next synchronization node, as well as a highway along the synchronization nodes towards the

root. This idea leads to the following construction.

Let (T ′,
{
𝐵′
𝑖

}
𝑖∈𝑉 (T′ ) ) be a modified tree decomposition with T ′ = T as before, and

𝐵′
𝑣 := 𝐵({𝑤 ∈ T𝑣↔𝑟 | 𝑤 ∈ T𝑣↔𝜎 (𝑣) ∨𝑤 is a synchronization node}) .

for each 𝑣 ∈ 𝑉 (T ).
The size of these bags is at most (𝑘+1) (𝜆+𝑑/𝜆), which for 𝜆 = 𝑑/𝑘 is in𝑂 (𝑑+𝑘2) ⊆ 𝑂 (log𝑛+𝑘2).
Notice that the bag 𝐵𝑟 is now contained in any bag 𝐵′

𝑖 , so we have some hope that the combina-

torial diameter of (T ′,
{
𝐵′
𝑖

}
𝑖∈𝑉 (T′ ) ) is low. Indeed this is true.

Lemma 4.5. It holds that T ′
has combinatorial diameter at most 3.
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(a)

(b)

Fig. 4. Illustration of an upward path with nodes of layer −1 as circles, nodes of layer 0 as diamonds, and
nodes of layer 1 as squares. The root is at some unspecified maximum layer. The bold nodes inFigure 4a mark
the super-highway from 𝑠 to 𝑟 . Figure 4b illustrates the simplification rounds for the 𝑥-𝑠-path, removing all
nodes of some layer in each round, except 𝑥 , 𝑠 , and possibly one node close to 𝑥 .

Proof. As before, we split any 𝑠-𝑡-path at 𝑥 , the lowest common ancestor of 𝑠 and 𝑡 , and consider

only the 𝑠-𝑥-path. Every non-synchronization node 𝑣 on T𝑠↔𝑥 has a node below it which is either

a synchronization node or 𝑠 . The bag of that node is a superset of 𝐵′
𝑣 , so all non-synchronization

nodes except 𝑠 and 𝑥 can be bypassed. Call that reduced path 𝑃 .

Consider the neighbor of 𝑠 in 𝑃 , which we denote 𝑣 , and assume that 𝑣 is not the neighbor

of 𝑥 in 𝑃 . Then 𝑣 must be a synchronization node, and its next node in 𝑃 is 𝜎 (𝑣). Now, the
intersection 𝐵′

𝑣 ∩ 𝐵′
𝜎 (𝑣) contains exactly all of the bags of synchronization nodes in T𝜎 (𝑣)↔𝑟 , and

thus, 𝐵′
𝑣 ∩ 𝐵′

𝜎 (𝑣) ⊆ 𝐵′
𝑠 . This implies that 𝑣 can be bypassed, and by repeating this process, we can

bypass every synchronization node except for the neighbor of 𝑥 .

This gives a possible simplification of T𝑠↔𝑡 as the path (𝑠, 𝜎𝑠 , 𝑥, 𝜎𝑡 , 𝑡), where the 𝜎𝑠 and 𝜎𝑡 are the
synchronization nodes below 𝑥 on the paths to 𝑠 and 𝑡 , respectively. There is a further reduction

of the whole path, since 𝐵′
𝑥 is precisely 𝐵′

𝜎𝑠
∩ 𝐵′

𝜎𝑡
. This allows us to remove 𝑥 as well, giving a

simplification of length 3. □

Using the fact that 𝑑 ∈ 𝑂 (log𝑛), and setting 𝜆 = 𝑑/𝑘 gives a fixed-parameter algorithm that

yields a constant-factor approximation:

Corollary 4.6. There exists an algorithm that in time 2
𝑂 (𝑘2 ) · 𝑛𝑂 (1)

computes a factor-𝑂 (1)
approximation for Sparsest-Cut instances where 𝐺 has treewidth at most 𝑘 .

4.3 Super-Highways
We can think of the previous construction as having two layers, bridges to synchronization nodes

and highways along synchronization nodes to the root. The highways need to cover many syn-

chronization nodes, leading to large bags in T ′
. To improve on this we introduce a network of

super-highways of different layers, where each layer covers fewer, more spaced-out synchroniza-

tion nodes on a root-leaf path. When we connect a node to the root we can then move up the tree

layer by layer with increasing speed, decreasing the size of bags in T ′
. Each added layer is paid

for by the need for an additional node in path simplifications for moving between layers, giving a

trade-off between run time and approximation guarantee.
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Let 𝑞 ∈ N1 be a parameter representing the number of layers. For a node 𝑣 ∈ T , we define the

layer 𝜋 (𝑣) of 𝑣 as

𝜋 (𝑣) := max{−1,max{ 𝑗 ∈ {0, . . . , 𝑞 − 1} | ℓ (𝑣) ≡ 0 mod 𝑘 𝑗/𝑞𝑑/𝑘}} .
By this definition, all synchronization nodes are assigned to some non-negative layer, and all other

nodes are on layer −1. We now get a new tree decomposition (T ′,
{
𝐵′
𝑖

}
𝑖∈𝑉 (T′ ) ) by constructing

bags

𝐵′
𝑣 = 𝐵({𝑤 ∈ T𝑝 (𝑣)↔𝑟 | 𝜋 (𝑤) = max{𝜋 (𝑢) | 𝑢 ∈ T𝑝 (𝑣)↔𝑤}} ∪ {𝑣})

for each 𝑣 ∈ 𝑉 (T ′). Informally, we start at some node 𝑣 and move towards 𝑟 by first taking all

nodes of layer −1 until we hit a node of layer 0, then taking only nodes of layer 0 until we hit

layer 1, and so on. The nodes at higher layers are spaced further apart. Thus this process “speeds

up” thereby generating smaller bags. To be precise, there are 𝑞 layers and at most 𝑘1/𝑞 nodes of any

one layer in a bag, so (T ′,B′) has width 𝑂 (𝑑 + 𝑞𝑘1+1/𝑞).
We now show that (T ′,

{
𝐵′
𝑖

}
𝑖∈𝑉 (T) ) has combinatorial diameter depending only on 𝑞.

Lemma 4.7. It holds that (T ′,
{
𝐵′
𝑖

}
𝑖∈𝑉 (T′ ) ) has combinatorial diameter at most 2𝑞 + 1.

Proof. As before, we only show that any upward path from 𝑠 to 𝑥 has combinatorial length at

most 𝑞 + 1. We need to perform a round of reductions for every layer, with the goal of leaving only

𝑠 , 𝑥 , as well as the first node of at least that layer below 𝑥 . For layer −1, this holds with the same

argument as before.

We can now proceed by induction, fixing some layer 𝑖 and assuming that the 𝑠-𝑥-path 𝑃 has been

reduced to contain only 𝑠 , then nodes of layers ≥ 𝑖 , followed by a sequence (𝜎𝑖−1, 𝜎𝑖−2, . . . , 𝜎0, 𝑥),
where each node 𝜎 𝑗 is in layer 𝑗 . Here, we assume w.l.o.g. that 𝑥 is at layer −1. Now consider any

node 𝑣 of layer 𝑖 , except the one closest to 𝑥 . Because its neighbors also have level at least 𝑖 (or

are 𝑠), the intersection of their bags can be represented as the union of bags of T whose layer is at

least 𝑖 . Let𝑤 be the predecessor of 𝑣 on 𝑠-𝑥-path 𝑃 . The set 𝐵′
𝑤 is constructed from some upward

path starting at𝑤 , containing only nodes of non-decreasing layer. This upward path hits layer 𝑖

between 𝑤 and 𝑣 , but not layer 𝑖 + 1 since a node of layer 𝑖 + 1 would be on 𝑃 between 𝑤 and 𝑣 .

So then 𝐵′
𝑤 covers all nodes of layer at least 𝑖 that 𝐵′

𝑣 covers, and therefore 𝑣 can be bypassed,

concluding the inductive step.

The simplification of T𝑠↔𝑥 produced in this fashion is a path (𝑠, 𝜎𝑞−1, . . . , 𝜎0, 𝑥), where 𝜋 (𝜎𝑖 ) = 𝑖 .

If we add the same simplification for T𝑡↔𝑥 we get a simplification for T𝑠↔𝑡 that takes the form

(𝑠, 𝜎𝑞−1, . . . , 𝜎0, 𝑥, 𝜎 ′
0
, . . . , 𝜎 ′

𝑞−1, 𝑡). As before 𝑥 can be bypassed since its bag is the intersection of

the bags of 𝜎0 and 𝜎
′
0
. Thus any 𝑠-𝑡-path in T ′

has combinatorial length at most 2𝑞 + 1. □

This implies the existence of the following family of algorithms.

Corollary 4.8. There exists an algorithm that, for any 𝑞 ∈ N1, computes a factor-𝑂 (𝑞2) approx-
imation for Sparsest-Cut on graphs of treewidth 𝑘 in time 𝑂 (2𝑞𝑘1+1/𝑞 ) · 𝑛𝑂 (1)

. In particular, taking

𝑞 = log𝑘 gives a factor-𝑂 (log2 𝑘) approximation in time 2
𝑂 (𝑘 log𝑘 ) · 𝑛𝑂 (1)

.

5 CONCLUSION & OPEN PROBLEMS
Our work is an attempt to simultaneously obtain the best run time and approximation factor for

Sparsest-Cut in the low-treewidth regime. Our research question combines the flavors of two

very active research areas, namely parameterized complexity and approximation algorithms. We

introduce a new measure of tree decomposition called combinatorial diameter and show various

constructions with different tradeoffs between 𝑤 (T ,B) and Δ(T ,B). We leave the question of

getting 2-approximation in 2
𝑂 (𝑘 ) · 𝑛𝑂 (1)

time as the main open problem. One way to design such
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an algorithm is to show the existence of a tree decomposition with 𝑤 (T ,B) = 𝑂 (log𝑛 + 𝑘) and
Δ(T ,B) = 2.

Another interesting question is to focus on polynomial-time algorithms and optimize the ap-

proximation factor with respect to treewidth. In particular, is there an log
𝑂 (1) 𝑘 approximation in

polynomial time? This question is open even for the uniform Sparsest-Cut (unit demand for every

vertex pair), for which a fixed-parameter algorithm [5] but no polynomial-time algorithm is known.

A broader direction that would perhaps complement the study along these lines is to improve

our understanding on a natural LP-rounding algorithm on the lift-and-project convex programs in

general. For instance, can we prove a similar tradeoff result for other combinatorial optimization

problems in this setting? One candidate problem is the Group Steiner Tree problem, for which

a factor-𝑂 (log2 𝑛) approximation in time 𝑛𝑂 (𝑘 )
is known (and the algorithm there is “the same”

algorithm as used for finding sparsest cuts). Can we get a factor-𝑂 (log2 𝑛) approximation in time

2
𝑂 (𝑘 ) · 𝑛𝑂 (1)

?
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